Spring 2006 CPSC270A: Algorithms
Home work 1

Assigned: Friday, January 20, 2006
Due: Monday, January 23, 2006

There are two problems on two pages.

Problem 1 Consider the following algorithm:

```c
int gcd1 (int m, int n) {
    int answer;
    if (n == 0)
        answer = m;
    else
        answer = gcd (n, m % n); // % is the mod operator.
    return (answer);
}
```

Prove that the above algorithm correctly computes the gcd of any two positive integers, \(m \) and \(n \).
Problem 2 Consider the following algorithm:

```c
int gcd2 (int m, int n) {
    int answer;
    if (m == n)
        answer = m;
    else if (m < n)
        answer = gcd (n, m);
    else
        answer = gcd (n, m - n);
    return (answer);
}
```

1. Prove that the above algorithm correctly computes the gcd of any two positive integers, \(m \) and \(n \).

2. Find an expression, in terms of \(m \) and \(n \), for the number of distinct values, including \(m \) and \(n \), that will be passed as parameters to \(\text{gcd2} \) while computing the gcd of \(m \) and \(n \). Consider the following two examples discussed in class.
 (a) \(\text{gcd2}(4, 3) \).
```
gcd2(4, 3) \rightarrow gcd2(3, 1)
     \rightarrow gcd2(1, 2)
     \rightarrow gcd2(2, 1)
     \rightarrow gcd2(1, 1)
     = 1.
```

Thus the distinct numbers in the calls to \(\text{gcd2} \) are 1, 2, 3 and 4, and thus the total of these numbers is 4.

(b) \(\text{gcd2}(6, 2) \).
```
gcd2(6, 2) \rightarrow gcd2(2, 4)
     \rightarrow gcd2(4, 2)
     \rightarrow gcd2(2, 2)
     = 2.
```

Thus the distinct numbers in the calls to \(\text{gcd2} \) are 2, 4, and 6, and thus the total of these numbers is 3.