CPSC 420 Simulation Project

Experimental Design and Validation
Steady State We will be doing a steady state simulation. [see pages 502-505, 518-525] In this type of simulation, we are assuming that we are interested in the behavior of the system during a uniformly busy time period. We do not want to include the "warm-up" period of the system in our performance measures. Hence, we must first determine when the system has "warmed" up -- when it has reached steady state. We will use a fairly simple procedure to determine steady state (much more complicated ones are described in the text).

Procedure for determining steady state: We will base our decision about steady state on just one performance measure – average delay at the inspection station. Put in your program a print statement that will print out the average at various time intervals – for example, printing out at 500 minutes, 1000 minutes, 1500 minutes, etc. up to at least 10000 minutes. The easiest way to do this is to add a process, say STEADY.STATE.TEST, and a global variable, say INCREMENT, that will be the time interval between printing out the current average delay. The process would be as follows:

process STEADY.STATE.TEST

 while time.v < STOP.TIME

 do

 wait INCREMENT minutes

 print out the average delay

 loop

 end

INCREMENT would be 500 to print results every for every 500 minutes or 1000 for every 1000 minutes.

Run the program with three replications. For each replication make a plot of time versus the average delay and observe where the curve leveled off. This number will be the steady state.

Once you have found steady state you will need to run your program for the number of minutes to reach steady state (the warm-up period), then reset the statistical counters (this just resets the counters, it does not remove processes from queues or sets -- that is, it keeps everything in the system still in bins and working) and continue the simulation for at least 10000 minutes (more may be better – running the factory for a week would be 10080 minutes). Note that to reset the statistical counters you do NOT reset things such as time.v or the number of gizmos in the bins. However you would need to reset any counters for the number of gizmos lost at the different bins.
Validation One part of validation is to compare your output to data from the real system. We will do this by comparing confidence intervals [see pages 283-289] for a few of the performance measures. We assume that we have observed the real system, collected data about its performance (number of gizmos made, delays, etc.), and constructed confidence intervals. The confidence intervals give us an acceptable range of values for each performance measure and give a means of comparison of simulation results to the actual system.

Now you should run your program (in steady state) for at least 10 replications (see suggestions below). Your program should produce several performance measures but we will use only six for validation: the average number of gizmos made in an 8 hour time period, the average number of gizmos lost (either because of full bins or breakdowns but not including raw materials or parts A or B lost) in an 8 hour time period, the average delay of a delay at the inspection station, the average utilization of the assemblers, and the average number of raw material A in bin A (after being processed by machine 1) and the average number of raw material B in bin B. For each measure you will use Minitab to construct a 95% confidence interval. The confidence intervals constructed from the data collected by the data collection team are as follows:

Avg. Number Made per 8 hours:

[197, 199]

Avg. Number Lost per 8 hours:

[3.0, 3.9]

Avg. Delay at Inspection:

[4.6, 5.4] minutes

Utilization of Assemblers:

[74.0, 75.8] percent

Avg. Number in Bin A:

[14.4, 37.3]

Avg. Number in Bin B:

[9.9, 28.3]

If there is overlap between your confidence intervals and the acceptable range of accuracy given by the confidence intervals constructed from data collected from the system, you may consider your model valid. If it is not, look again at your logic. It is acceptable to calibrate your model by making slight adjustments. (Chapter 5, page 282, discussed the idea of calibration.) Continue this until you determine your model is valid (sometimes in "real" life it is impossible to get all performance measures to match up well). You may need to consult the system expert (the SME) if things are way off!

Replications You need to do your replications in steady state. That is, you repeat the warm up period for each replication then run for a fixed amount of time (at least 10000 minutes). After the warm up period you reset statistical counters but don't set time back or values of any variables. Resetting statistical counters does not remove anything from the queues or sets or from using resources so the system stays in its "busy" state. If you write your program so the main has a loop to do the different replications and if you use sets, you will probably need to explicitly remove all the processes from each set AFTER each replication (not after the warm-up). A process is automatically destroyed when it finishes executing but an error message results if a process tries to be destroyed when it is either holding a resource (in a resource set) or when it owns a set with processes in it.

