CPSC 420 Simulation Project

Report of the Data Collection Team

April 14, 2005
The Data Collection Team spent a week collecting data, talking to management and employees, and observing the operation of The Gizmo Manufacturing Company. They drew the following conclusions about the system.

· Shipments of raw materials A and raw materials B follow different patterns. Shipments of raw material A arrive every 8 hours give or take 30 minutes; shipments of raw material B arrive every 12 hours give or take 30 minutes. The size of each shipment of raw material A is 200; the size of each shipment of raw material B is 300.

· The capacities of the bins in the factory are as follows:

· Machine 1:
250
· Machine 2:
375
· Part A (after coming out of machine 1):
125
· Part B (after coming out of machine 2):
150
· Machine 3:
25
· Inspection Station:
20
· Packaging Station:
10

· There was almost no variation detected in the travel time between stations. The team found that the time was a constant 0.5 minutes on all parts of the conveyor belt. In particular, this includes the time an assembled part travels to machine 3, the time the completed gizmo travels from machine 3 to the inspection station, and the time a gizmo that passes inspection travels to the packaging station and the time it takes a rejected gizmo to get back to machine 3. The time it takes to get from a bin to the machine or worker is negligible. Similarly the processed raw material A from machine 1 goes directly into the bin for part A and the processed raw material B from machine 2 goes directly into the bin for part B with no time passing.
· Seven percent of the gizmos are rejected at the inspection station.

· There are 4 workers at the assembly station, 3 workers at the inspection station, and 3 workers at the packaging station.
· The team took measurements of processing times at the various stations. The raw data in the following files should be analyzed to determine the appropriate distributions to model the processing. These files are located on the Y drive.
· Time to process raw material A at machine 1:
matA.dat

· Time to process raw material B at machine 2:
matB.dat

· Time to assemble a gizmo:

assemble.dat

· Time to process a gizmo at machine 3:

machine3.dat

· Time to inspect a gizmo:

inspect.dat

· Time to package a gizmo:

package.dat

· The team carefully studied the breakdown and repair patterns of the machines and discussed these with the workers on the factory floor. Because the workers were convinced that the three machines had very different breakdown patterns data on the breakdowns was collected separately for the three machines. Furthermore, the workers believed that there were no significant differences in the repair time patterns. The team's observations confirmed this. Hence, repair data was combined. The raw data collected by the team is in the following files which are on the Y drive:

· Running time before a breakdown for machine 1:
runtime1.dat

· Running time before a breakdown for machine 2:
runtime2.dat

· Running time before a breakdown for machine 3:
runtime3.dat

· Repair times (for all machines):

repair.dat

Notes on Performance Measures The management of The Gizmo Manufacturing Company clearly wants as much data as possible about utilization of servers, delays, losses at bins, and so on in order to locate bottlenecks in the system. However, the bottom line at TCMC depends on how many gizmos are made and how many are lost. Hence, the management needs to know the following for each 8 hour shift:
· Number of gizmos made (good gizmos)

· Number of gizmos lost due to full bins or machine breakdowns

· Number of part A lost either at machine 1 (due to full bin or breakdown) or at the assembler (due to a full part A bin)

· Number of part B lost either at machine 2 (due to full bin or breakdown) or at the assembler (due to a full part B bin)

Notes on Data Analysis

Analyzing Data for Input Data files from the data collection team are on the Y drive. All numbers in those files are expressed in minutes.

For your information: The following are the random variate generators available in SIMSCRIPT II.5.

uniform.f(min, max, stream)

exponential.f(mean, stream)

gamma.f(mean, alpha, stream)

[NOTE: The arguments here are slightly different from those used in Minitab -- here the first argument is the mean and the second is the parameter α. In Minitab the arguments are the two parameters α and β.]

weibull(alpha, beta, stream)

[The parameters are the parameters α and β as given in the text. The same parameters are used in Minitab.]

randi.f(i, j, stream)

[Generates an integer between the integers i and j]

random.f(stream)

[this is the basic random number generator; that is, it generates a number between 0 and 1]

Streams for random number generation To help increase the likelihood of the simulation output being independent and to ensure correct experimental conditions when trying alternate operating policies, each time you use a random variate in your program you should have a different stream number. Unfortunately, SIMSCRIPT only provides 10 different streams by default (which is not enough for this project). However, we can overcome this by redefining the seeds. I will place a file of 99 random number seeds on the course web page. The name of the file will be seed.dat. You should use this file (see the code below) so you can use different streams for each random component of the system.
SIMSCRIPT stores the seeds for each stream in an array called seed.v. By default this array is a one dimensional array of integers with 10 entries. To redefine it to be larger we need to release the default array, declare seed.v to be larger, and then read the values into the larger array. You can have the seeds in a file and read from that file. I recommend putting your other input data in a separate file and reading from that for the other input. The following code placed at the beginning of the main section will do this:

main

 define i as an integer variable

 (all other local variable definitions)

 release seed.v

 reserve seed.v as 99

[NOTE: In place of 99 use the number you need - You shouldn't need 99 streams but I have created a file of 99 of them -- use as many as you want.]

 open unit 1 for input, name = "seed.dat"

 use 1 for input

 for i = 1 to 99

 do

 read seed.v(i)

 loop

 close unit 1

