1. Prove that if $(1/k)$th of the time spent executing an algorithm involves operations that must be performed sequentially, then an upper limit on the speedup achievable by executing the algorithm on parallel processors is k.

2. Devise a CREW (concurrent read, exclusive write) PRAM algorithm to multiply two $n \times n$ matrices, where $n = 2^k$. Suppose the running time of the optimal sequential algorithm for matrix multiplication is $O(n^{2.6})$, is your algorithm cost-optimal? Explain your answer.

3. Consider the following idea for a PRAM algorithm to merge two sorted lists, say A and B, each of size $n/2$, using n processors. Assume that all the n elements are distinct. Associate each processor with one element of one of the lists, so that each of the n elements is associated with distinct processors. Suppose a processor is associated with an element in list A. It knows the position of its data item in list A (the index of the item in A), and hence knows the number of elements in list A smaller than its data item. It then performs a binary search on the elements of list B to figure out how many of the elements in B are smaller than its data item. Thus it can figure out the position of its data item in the merged list.

Using the above idea, design a CREW PRAM algorithm for merging two sorted lists, each of size $n/2$. Derive the running time of your algorithm. Explain whether your algorithm is cost-optimal or not.

4. Using the above, design an $O(\log^2 n)$ PRAM algorithm to sort a list of n distinct integers. Explain whether your algorithm is cost-optimal.