
1.3. What is debugging? 3

output: Display data on the screen or send data to a file or other device.

math: Perform basic mathematical operations like addition and multiplication.

conditional execution: Check for certain conditions and execute the appropriate sequence of state-
ments.

repetition: Perform some action repeatedly, usually with some variation.

Believe it or not, that’s pretty much all there is to it. Every program you’ve ever used, no matter
how complicated, is made up of instructions that look pretty much like these. So you can think of
programming as the process of breaking a large, complex task into smaller and smaller subtasks
until the subtasks are simple enough to be performed with one of these basic instructions.

That may be a little vague, but we will come back to this topic when we talk about algorithms.

1.3 What is debugging?

Programming is error-prone. For whimsical reasons, programming errors are called bugs and the
process of tracking them down is called debugging.

Three kinds of errors can occur in a program: syntax errors, runtime errors, and semantic errors. It
is useful to distinguish between them in order to track them down more quickly.

1.3.1 Syntax errors

Python can only execute a program if the syntax is correct; otherwise, the interpreter displays an
error message. Syntax refers to the structure of a program and the rules about that structure. For
example, parentheses have to come in matching pairs, so (1 + 2) is legal, but 8) is a syntax error.

In English readers can tolerate most syntax errors, which is why we can read the poetry of e. e.
cummings without spewing error messages. Python is not so forgiving. If there is a single syntax
error anywhere in your program, Python will display an error message and quit, and you will not be
able to run your program. During the first few weeks of your programming career, you will probably
spend a lot of time tracking down syntax errors. As you gain experience, you will make fewer errors
and find them faster.

1.3.2 Runtime errors

The second type of error is a runtime error, so called because the error does not appear until after the
program has started running. These errors are also called exceptions because they usually indicate
that something exceptional (and bad) has happened.

Runtime errors are rare in the simple programs you will see in the first few chapters, so it might be
a while before you encounter one.



4 Chapter 1. The way of the program

1.3.3 Semantic errors

The third type of error is the semantic error. If there is a semantic error in your program, it will
run successfully in the sense that the computer will not generate any error messages, but it will not
do the right thing. It will do something else. Specifically, it will do what you told it to do.

The problem is that the program you wrote is not the program you wanted to write. The meaning of
the program (its semantics) is wrong. Identifying semantic errors can be tricky because it requires
you to work backward by looking at the output of the program and trying to figure out what it is
doing.

1.3.4 Experimental debugging

One of the most important skills you will acquire is debugging. Although it can be frustrating,
debugging is one of the most intellectually rich, challenging, and interesting parts of programming.

In some ways, debugging is like detective work. You are confronted with clues, and you have to
infer the processes and events that led to the results you see.

Debugging is also like an experimental science. Once you have an idea about what is going wrong,
you modify your program and try again. If your hypothesis was correct, then you can predict the
result of the modification, and you take a step closer to a working program. If your hypothesis was
wrong, you have to come up with a new one. As Sherlock Holmes pointed out, “When you have
eliminated the impossible, whatever remains, however improbable, must be the truth.” (A. Conan
Doyle, The Sign of Four)

For some people, programming and debugging are the same thing. That is, programming is the
process of gradually debugging a program until it does what you want. The idea is that you should
start with a program that does something and make small modifications, debugging them as you go,
so that you always have a working program.

For example, Linux is an operating system that contains thousands of lines of code, but it started
out as a simple program Linus Torvalds used to explore the Intel 80386 chip. According to Larry
Greenfield, “One of Linus’s earlier projects was a program that would switch between printing
AAAA and BBBB. This later evolved to Linux.” (The Linux Users’ Guide Beta Version 1).

Later chapters will make more suggestions about debugging and other programming practices.

1.4 Formal and natural languages
Natural languages are the languages people speak, such as English, Spanish, and French. They
were not designed by people (although people try to impose some order on them); they evolved
naturally.

Formal languages are languages that are designed by people for specific applications. For example,
the notation that mathematicians use is a formal language that is particularly good at denoting rela-
tionships among numbers and symbols. Chemists use a formal language to represent the chemical
structure of molecules. And most importantly:

Programming languages are formal languages that have been designed to express
computations.



2.10. Debugging 15

Everything from the # to the end of the line is ignored—it has no effect on the program.

Comments are most useful when they document non-obvious features of the code. It is reasonable
to assume that the reader can figure out what the code does; it is much more useful to explain why.

This comment is redundant with the code and useless:

v = 5 # assign 5 to v

This comment contains useful information that is not in the code:

v = 5 # velocity in meters/second

Good variable names can reduce the need for comments, but long names can make complex expres-
sions hard to read, so there is a tradeoff.

2.10 Debugging

At this point the syntax error you are most likely to make is an illegal variable name, like class and
yield, which are keywords, or odd˜job and US$, which contain illegal characters.

If you put a space in a variable name, Python thinks it is two operands without an operator:

>>> bad name = 5
SyntaxError: invalid syntax

For syntax errors, the error messages don’t help much. The most common messages are
SyntaxError: invalid syntax and SyntaxError: invalid token, neither of which is very
informative.

The runtime error you are most likely to make is a “use before def;” that is, trying to use a variable
before you have assigned a value. This can happen if you spell a variable name wrong:

>>> principal = 327.68
>>> interest = principle * rate
NameError: name 'principle' is not defined

Variables names are case sensitive, so LaTeX is not the same as latex.

At this point the most likely cause of a semantic error is the order of operations. For example, to
evaluate 1

2π , you might be tempted to write

>>> pi = 3.1415926535897931
>>> 1.0 / 2.0 * pi

But the division happens first, so you would get π/2, which is not the same thing! There is no way
for Python to know what you meant to write, so in this case you don’t get an error message; you just
get the wrong answer.

2.11 Glossary
value: One of the basic units of data, like a number or string, that a program manipulates.


