
6 CHAPTER 1 Introduction

• You will understand and apply abstraction. • You will learn to think and communicate more clearly.

Problem solving happens on three different levels:

• Strategy: A high-level idea for finding a solution.

• Tactics: Methods or patterns that work in many different settings.

• Tools: Specific tricks and techniques that are used in specific situations.

Paul Zeitz [Zei99] provides us with a helpful analogy for illustrating the three different
levels of problem solving:

You are standing at the base of a mountain, hoping to climb to the summit.
Your first strategy may be to take several small trips to various easier peaks
nearby, so as to observe the target mountain from different angles. After this,
you may consider a somewhat more focused strategy, perhaps to try climbing
the mountain via a particular ridge. Now the tactical considerations begin:
how to actually achieve the chosen strategy. For example, suppose that our
strategy suggests climbing the south ridge of the peak, but there are snowfields
and rivers in our path. Different tactics are needed to negotiate each of these
obstacles. For the snowfield, our tactic may be to travel early in the morning
while the snow is hard. For the river, our tactic may be scouting the banks for
the safest crossing. Finally, move into the most tightly focused level, that of
tools: specific techniques to accomplish specialized tasks. For example, to cross
the snowfield we may set up a particular system of ropes for safety and walk
with ice axes. The river crossing may require the party to strip from the waist
down and hold hands for balance. These are all tools. They are very specific.
You would never summarize, "To climb the mountain we had to take our pants
off and hold hands," because it was a minor-though essential--eomponent of the
entire climb. On the other hand, s.trategic and sometimes tactical ideas are
often described in your summary: "We decided to reach the summit via the
south ridge and had to cross a difficult snowfield and a dangerous river to get
to the ridge."

1 . 4 Problem-Solving Strategie& 7

As you progress through this book, you will encounter several different problem-solving
strategies. In addition, you will see that computer science uses many different problem­
solving tactics. In particular you will learn to recognize patterns in the problems you
solve that lead to patterns in the programs you write. Finally, as you use the Python
programming language you will learn about the tools that Python provides to write your
solution as a program.

A simple example will illustrate some of what we are talking about. The question is as
follows: "A class has 12 students. At the beginning of class each student shakes hands with
each of the other students. How many handshakes take place?"

Your first instinct might be to simply say that since each person must shake hands with 11
other people the answer is 12 · 11 = 132 handshakes, but you would be wrong. To help you
make progress toward the correct answer, you can employ a strategy called simplification.
Simplification is a strategy that reduces a problem to a trivial size.

Let's assume that instead of 12 people there is only one person in the classroom. When
there is only a single person, no handshakes will take place. But what happens when a
second person enters the classroom? Upon entering the room, the second person must
shake hands with the first (and only other) person in the room for one handshake. Now
suppose a third person enters the classroom. The third person must shake hands with the
first. two, making a total of 2 + 1 + 0 = 3 handshakes. The fourth person who enters the
room must shake hands with the three people already in the room, so our total handshake
count is now 3 + 2 + 1 + 0 = 6. By this time you should see a pattern of generalization-a
technique that enables you to go from some specific examples to a solution that can be
implemented as a program.

In our handshaking problem the pattern is telling us that the Nth person to enter the
classroom shakes hands with N - 1 other people, and the total number of handshakes is the
sum 1 + 2 + 3 + . . . N - 1. At this point we might simply write a computer program that
adds up the numbers from 1 to N - 1 for us. Adding numbers is something that computers
are particularly good at. However, we will also point out that there is a general solution
for this problem for adding a sequence of numbers:

sum = n . (n + 1)
2

For our handshake problem, we need to add up the numbers from 1 to 1 less than the
number of students. Given that there are 12 students, n = 11. Plugging 11 into the formula
gives us:

11 · 12
= 66

2

8 CHAPTER 1 Introduction

- -
- - -
- - - -

Figure 1 .1 Representing the sum of the numbers from 1 to N graphically

You can verify this result yourself by simply adding the numbers from 1 to 11.

In fact we can prove that the formula gives us the correct answer by using representation,
another important strategy that will solve our problem. Proving that L� n = is
true for all values of n using mathematical induction would be a daunting task for most
people. However, let's visualize the problem of adding up the numbers from 1 to N as
shown in Figure 1 . 1 .

I n this representation of the problem, we show each o f the numbers we want to add as a
row of circles, thus representing the addition of 1 + 2 + 3 + 4. Now we could just count the
circles to get our answer, but that is not very interesting and does not prove anything. The
interesting part comes in Figure 1 . 2 , where we have taken all four rows of dots, duplicated
them, and flipped them diagonally. The dots now form a rectangle that is 4 rows high and
5 columns wide. It is now ea.•y to see that the total number of dots is just 4 · 5 = 20. But
we have twice a.• many dots a.• we started with. so the number of dots we started with is
20 .;- 2 = 10 .

If you generalize our example a little bit, it is easy to see that this graphical trick works no
matter how many rows of dots we use. Therefore we have shown a proof for an interesting
mathematical sequence, but because we chose a good representation for the problem we
have not had to do anything more complicated than simple multiplication and division .

1.5 Python Overview 9

0

e e o o o

e e e o o

e e e e o
Figure 1 .2 The sum of the numbers 1 to N is "

1 .5 Python Overview

In this book the language you will use to write your computer programs is called Pytho n .

Why did we choose Python instead of a language like C++ or Java? The answer is simple:
We want you to focus on learning the problem-solving strategies and techniques that a com­
puter scientist uses. Programming languages are tools and Python is a good beginning
tool . Languages like Java and C++ are fine tools as well, but they require you to keep
track of many more details and they are harder to learn than Python.

The best way to learn Python is to try it out-so let's get started. The first thing we are
going to do is start the Python interpreter. The program we are going to use to introduce
Python is called IDLE-named after Eric Idle of Monty Python fame. Depending on your
operating system, you can select IDLE in your Start menu and click on the IDLE icon in
your Applications folder. Or you can simply type idle at a command prompt. No matter
how you start it, you will know you are successful when you see a window such as the one
shown in Figure 1 .3. For detailed instructions on installing and starting Python on your
system, refer to Appendix A.

As you progress through this chapter, you will see that example programs arc in boxes
called listings. and commands that you can type interactively at the Python shell are in
boxes called sessions . Whenever you see a session box, we strongly encourage you to try
the session for yourself. Also, once you have typed in the example we have shown. feel free
to try some variations in order to find out for yourself what works and what does not.

10 CHAPTER 1 Introduction

Python 3 . 8b2 (rBl :&Sm. Jul 29 2111. 13 : 37 : 17)
(GCC 4 . 8 . l (•le Inc . build 5465)) on dandn Type •copyrighe . •credits• or · ucense o · tor 110re info,..tion .

Persona\ firew\ \ soft.are •Y wm about the CGl'lnection IDLE
•kes to its subprocess using this C011Pute r ' s internal \oapblck
interface. This connection is not visible on any external !�!=��=-�.::.�:!:.!:.:::!.!:.:�.�=!�.!�.!�.�:!:�!�.

IDLE J . 8b2 >» I

Figure 1 .3 The Python shell in IDLE

As we begin to explore Python, we will answer three important questions you should ask
about any programming language:

• What are the primitive elements? • How can we combine the primitive elements?
• How can we create our own abstractions?

1 .5.1 Primitive Elements

At the deepest level, the one primitive element in Python is the object. In fact, everything
in Python is an object, and you will read this refrain often in this book. By now you are
probably wondering what we mean by object. After all, if you look around you will see
many objects: this book, pencils, pens, your chair, a computer. What do these items have
to do with Python? Like you, Python thinks of the things in its world as objects. Python
even considers numbers to be objects-an idea that may be a bit confusing to you as you
probably don't think of numbers as objects. But Python does, and we'll see why this is
important shortly.

1 . 5 Python Overview 11

Python classifies the different kinds of objects in its world into types . Some of the
easiest types to work with are numbers. Python knows about several different types of
numbers:

• Integer numbers
• Floating point numbers • Complex numbers

Integer Numbers

Integers are the whole numbers that you learned about in math class. We will introduce
more of Python's primitive types as we progress. through this chapter. But before we move
on let's look at Python's integers in more detail. We can already do a lot with Python just
using integers. For starters, we can use the Python shell we started a few moments ago
as a calculator. Let's try a few mathematical expressions. Type in the following examples
using the Python shell in IDLE. After you have typed in an expression, press the return
key to see the result.

>>>

4
>>>

25
>>>

63
>>>

7
>»

7
>>>

2+2

100-75

7•9

14//2

15//2

15 % 2

s.ssian 1 .1 Simple integer math

The examples in Session 1.1 illustrate some very important Python concepts that you should
become familiar with as soon as possible. The first concept is Python's evaluation loop.

12 CHAPTER 1 Introduction

Figure 1 .4 The Read-Eval-Print loop in Python

At a high level, the Python interpreter is really very simple. It does three things over and
over again: (1) read, (2) evaluate, and (3) print. These are illustrated in Figure 1.4.

First, Python reads one line of input. In the first example, Python reads 2 + 2, then it
evaluates the expression 2 + 2 and determines that the answer is 4. Finally, Python pri.nts
the resulting value of 4. After displaying the result, Python prints the characters »> to
show you that it is waiting to read another expression. The three characters »> are called
the Python prompt.

In general a Python expression is a combination of operators and operands. In the
examples in our Python session, the operators are familiar mathematical operators '+ ' , ' - ' , ' * ' , and '//.' You may be more used to x and + for multiplication and division, but
you will not find those symbols on a standard keyboard, so Python, and almost all other
programming languages use "*" and "/."

One thing that may surprise you in the example is the result of the expression 15/ /2. Of
course, we all know that 15 divided by 2 is really 7 . 5 . However, because both operands are

1.5 Python Overview 13

integer objects and / / is the integer division operator, Python produces an integer object
as a result. Integer division works like the division you learned when you were young. 15
divided by 2 equals 7, remainder 1. You can find out the remainder part of the result using
the modulo operator (3) . For example, 15 % 7 evaluates to the remainder value of 1.

Integer division is really useful in some cases, but it can also trip you up. What if you want
to divide 7 by 2 and get 7 . 5 as the answer? In order .to get the result as a floating point
number you must use the floating point division operator ' / ' .

Exerdses

1 .1 Find the sum of the numbers 8, 9, and 10. � 4--' � -1- l 0
1 .2 Find the product of the numbers 8, 9, and 10. �A- .::ii .i(- \ i)
1 .3 Compute the number of seconds in a year. 3 � 5 � ?.Lo\ "° l_p O ,>!(�c
1 .4 Compute the number o f inches i n 1 mile. ' L ,----1
1 .S Compute the numfr of 2 ft square tiles to cover the floor of a 10 by 12 ft rJm. _ ___, \ 'l. � \ 'I:::> ')..
1 .6 Compute the numoer of handshakes required to shake all the hands of your classmates.

1 .7 Find the average age of five people around you using integer division. Double-check
your answer.

Floating-Point Numbers

Floating-point numbers are Python's approximation of what you called real numbers in
math class. We say that floating-point numbers are an approximation because unlike real
numbers, floating-point numbers cannot have an infinite number of digits following the
decimal point. In Python you can tell the difference between a floating-point number and
an integer because a float has a decimal point. Session 1.2 presents some examples of math
using floating-point numbers.

14 CHAPTER 1 Introduction

>» 2 . 0 + 2 . 0
4 . 0
»> 2 + 2 . 0
4 . 0
»> 1 5 I 2
7 . 5
»> 2 . 0 * * 50
1 125899906842624 . 0
>>> 2 . 5 * * 25
8881784197 . 0012531
>» 2 . 0 * * 500
3 . 2733906078961419e+150
>>> 1 . 33e+5 + 1 . 0
133001 . 0

Session 1 .2 Floating-point math

Notice that we have added something new in this example: the ** symbol, which is called
the exponentiation operator. So 2 . 0 ** 50 is really two to the fiftieth power. You should
also notice that when the result of a floating-point operation gets really big, Python uses
scientific notation to express the results. The Python number 3 . 273e+150 really means
3.273 times 10 to the 150th power, or 3273 followed by 147 zeros! A very big number
indeed. Notice also that you can use floating-point numbers in scientific notation as part
of a Python expression.

1 .8 Find the average age of five people around you using floating-point division. Double­
check your answer.

1 .9 Find the volume of a sphere with a _radius of 1 using the formula 4/3,,.r3.

1.10 Compute 1 /3 of 15. Did you get the right answer?

1.11 The Andromeda galaxy is 2.9 million light-years away. There are 5.878 x 1012 miles
per light-year. How many miles away is the Andromeda galaxy?

1 .5 Python Overview 15

1 .1 2 How many yea.is would it take to travel to the Andromeda galaxy at 65 miles per
hour?

Although 3.273e + 150 is a good approximation, we know that there are not really 147
zeros in the result. One of the disadvantages of using scientific notation is that you lose
some precision in your result. If you want to get ve,ry exact results, integers allow us to
do calculations to unlimited precision. Session 1.3 shows the real value of 2 ** 500 using
integers.

>» 2 ** 500
32733906078961418700 1318969682759915221664204604306478948329136809
6 13379640467455488327009232590415715088668412756007 10092 1725654588
5393053328527589376
>>>

Session 1 .3 The use of integers to obtain very precise answers for large numbers

Exercises
1 . 13 Compute the factorial of 13.

1 .14 Compute 2 to the 120th power. {,,, � \ (_.()
1 .15 If the universe is 15 billion years old, how many seconds old is it?

1 .16 How many handshakes would it take for each person in Chicago to shake hands with
every other person?

Complex Numbers

The final primitive numeric type in Python is the complex number. As you may re­
member, complex numbers have two parts to them, a real part and an imaginary part. In
Python a complex number is displayed as real + imaginaryj . For example, 5.0 + 3j has a
real part of 5.0 and an imaginary part of 3. Although we mention complex numbers here
to give you a complete list of the numeric primitives, we will not go into ·any additional
details at this point.

lli CHAPTER 1 Introduction

Summary of Numeric Types

What happens when we mix integers and floating point numbers? Let's look at the examples
shown in Session 1 .4 to find out.

»> 100 * 3 . 4
340 . 0
>>> 100000000000000000000000000 * 3 . 4
3 . 4000000000000003e+26
>>> 10000000 * 1000000
10000000000000
>>> 1000000000 I 1000000000

»> 1000 II 10 . 0
100 . 0
» > 1000 I 10 . 2
98 . 039215686274517
>» 1000 II 10 . 2
98 . 0
> » 5 + 4+3j
(9+3j)

Smion 1 .4 Mixing integers, long integers, floats, and complex numbers

When mixing different types of numbers, you can figure out what the result will be converted
to by applying the following rules:

1. If either argument is a complex number, the other is converted to complex.

2. If either argument is a floating-point number, the other is converted to floating-point.

3. For all other arguments, both must. be plain integers and no conversion is needed.

Notice that when using floating-point numbers with the integer division operator the result
is a floating-point number with the fractional part truncated. You can also tell Python
to explicitly convert a number to either an integer or floating-point number by using the

1 . 5 Python Overview 17

int or float functions. For example, float (5) will convert the integer 5 to the floating­
point number 5.0. When converting floating-point numbers to integers, Python always
truncates the fractional part of the number. For example, int (3 . 99999) will convert the
floating-point number 3.99999 to the integer 3.

In summary, we have seen that Python supports several different types of primitive objects
in the number family: integers for ordinary simple math; or, when precision is required or
when dealing with very large numbers; floating-point numbers, for working with scientific
applications or accounting applications where we need to keep track of dollars and cents.
We have seen that Python can be used to make simple numerical calculations. However, at
this point Python is nothing more than a calculator. In the next section we will add some
additional Python primitives that will give us a lot more power.

1.5.2 Naming Objects

Very often we have an object that we would like to remember. Python allows us to name
objects so that we can refer to them later. For example, we might want to use the name pi
rather than the value 3.14159 in a mathematical expression. We might also want to give a
name to a value that we are going to use over and over again rather than recalculating it
each time.

In Python we can name objects using an assignment statement. A statement is like an
expression except that it does not produce a value for the read-eval-print loop to print.
An assignment statement has three parts: (1) the left-hand side, (2) the right-hand side,
and (3) the assignment operator (=). The left side contains the name we are assigning to
a variable, and the right side can be any Python expression.

variableName = python expression

When the Python interpreter evaluates an assignment statement, it first evaluates the
expression that it finds on the right-hand side of the equals sign. Once the right-hand side
expression has been evaluated, the resulting object is referred to using the name found on
the left side of the equals sign. In computer science, we call these names variables. More
formally, we define a variable to be a named reference to a data object. In other words, a
variable is simply a name that allows us to locate a Python object.

Suppose we want to calculate the volume of a cylinder where the radius of the base is 8 cm
and the height is 16 cm. We will use the formula volume = area of base * height. Rather than
calculate everything in one big expression, we will divide the work into several assignment
statements. First, we will name the numeric objects "pi," "radius," and "height." Next,

