
Optimal Play of the Dice Game Pig 25

Optimal Play of the Dice Game Pig
Todd W. Neller
Clifton G.M. Presser
Department of Computer Science
300 N. Washington St.
Campus Box 402
Gettysburg College
Gettysburg, PA 17325–1486
tneller@gettysburg.edu

Introduction to Pig
The object of the jeopardy dice game Pig is to be the first player to reach 100

points. Each player’s turn consists of repeatedly rolling a die. After each roll,
the player is faced with two choices: roll again, or hold (decline to roll again).

• If the player rolls a 1, the player scores nothing and it becomes the opponent’s
turn.

• If the player rolls a number other than 1, the number is added to the player’s
turn total and the player’s turn continues.

• If the player holds, the turn total, the sum of the rolls during the turn, is
added to the player’s score, and it becomes the opponent’s turn.

For such a simple dice game, one might expect a simple optimal strategy,
such as in Blackjack (e.g., “stand on 17” under certain circumstances, etc.). As
we shall see, this simple dice game yields a much more complex and intriguing
optimal policy, described here for the first time. The reader should be familiar
with basic concepts and notation of probability and linear algebra.

Simple Tactics
The game of Pig is simple to describe, but is it simple to play well? More

specifically, how can we play the game optimally? Knizia [1999] describes
simple tactics where each roll is viewed as a bet that a 1 will not be rolled:

The UMAP Journal 25 (1) (2004) 25–47. c©Copyright 2004 by COMAP, Inc. All rights reserved.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice. Abstracting with credit is permitted, but copyrights
for components of this work owned by others than COMAP must be honored. To copy otherwise,
to republish, to post on servers, or to redistribute to lists requires prior permission from COMAP.

26 The UMAP Journal 25.1 (2004)

. . . we know that the true odds of such a bet are 1 to 5. If you ask
yourself how much you should risk, you need to know how much there
is to gain. A successful throw produces one of the numbers 2, 3, 4, 5, and
6. On average, you will gain four points. If you put 20 points at stake
this brings the odds to 4 to 20, that is 1 to 5, and makes a fair game. . . .
Whenever your accumulated points are less than 20, you should continue
throwing, because the odds are in your favor.

Knizia [1999, 129]

However, Knizia also notes that there are many circumstances in which
one should deviate from this “hold at 20” policy. Why does this reasoning not
dictate an optimal policy for all play? The reason is that

risking points is not the same as risking the probability of winning.

Put another way, playing to maximize expected score for a single turn is differ-
ent from playing to win. For a clear illustration, consider the following extreme
example. Your opponent has a score of 99 and will likely win in the next turn.
You have a score of 78 and a turn total of 20. Do you follow the “hold at 20”
policy and end your turn with a score of 98? Why not? Because the probability
of winning if you roll once more is higher than the probability of winning if the
other player is allowed to roll.

The “hold at 20” policy may be a good rule of thumb, but how good is it?
Under what circumstances should we deviate from it and by how much?

Maximizing the Probability of Winning
Let Pi,j,k be the player’s probability of winning if the player’s score is i,

the opponent’s score is j, and the player’s turn total is k. In the case where
i + k ≥ 100, we have Pi,j,k = 1 because the player can simply hold and win.
In the general case where 0 ≤ i, j < 100 and k < 100 − i, the probability of a
player who plays optimally (an optimal player) winning is

Pi,j,k = max (Pi,j,k,roll, Pi,j,k,hold),

where Pi,j,k,roll and Pi,j,k,hold are the probabilities of winning for rolling or
holding, respectively. These probabilities are

Pi,j,k,roll = 1
6

[
(1− Pj,i,0) + Pi,j,k+2 + Pi,j,k+3 + Pi,j,k+4 + Pi,j,k+5 + Pi,j,k+6

]
,

Pi,j,k,hold = 1− Pj,i+k,0.

The probability of winning after rolling a 1 or after holding is the probability
that the other player will not win beginning with the next turn. All other
outcomes are positive and dependent on the probabilities of winning with
higher turn totals.

Optimal Play of the Dice Game Pig 27

At this point, we can see how to compute the optimal policy for play. If we
can solve for all probabilities of winning in all possible game states, we need
only compare Pi,j,k,roll with Pi,j,k,hold for our current state and either roll or hold
depending on which has a higher probability of resulting in a win.

Solving for the probability of a win in all states is not trivial, as dependencies
between variables are cyclic. For example, Pi,j,0 depends on Pj,i,0 which in turn
depends on Pi,j,0. This feature is easily illustrated when both players roll a 1 in
subsequent turns. Put another way, game states can repeat, so we cannot simply
evaluate probabilities from the end of the game backwards to the beginning,
as in dynamic programming (as in Campbell [2002] and other articles in this
Journal) or its game-theoretic form, known as the minimax process (introduced
in von Neumann and Morgenstern [1944]; for a modern introduction to that
subject, we recommend Russell and Norvig [2003, Ch. 6]).

Let x be the vector of all possible unknown Pi,j,k. Because of our equa-
tion Pi,j,k = max (Pi,j,k,roll, Pi,j,k,hold), our system of equations takes on the
interesting form

x = max (A1x + b1,A2x + b2).

The geometric interpretation of a linear system x = Ax+b is that the solution
is the intersection of hyperplanes; but what does our system correspond to
geometrically? The set of solutions to a single equation in this system is a
(possibly) “folded” hyperplane (Figure 1); so a simultaneous solution to the
system of equations is the intersection of folded hyperplanes.

Figure 1. A folded plane.

However, our system has additional constraints: We are solving for prob-
abilities, which take on values only in [0, 1]. Therefore, we are seeking the
intersection of folded hyperplanes within a unit hypercube of possible proba-
bility values.

28 The UMAP Journal 25.1 (2004)

There is no known general method for solving equations of the form x =
max (A1x + b1,A2x + b2). However, we can solve our particular problem
using a technique called value iteration.

Solving with Value Iteration
Value iteration [Bellman 1957; Bertsekas 1987; Sutton and Barto 1998] is a

process that iteratively improves estimates of the value of being in each state
until the estimates are “good enough.” For ease of explanation, we first intro-
duce a simpler game that we have devised called “Piglet.” We then describe
value iteration and show how to apply it to Piglet as a generalization of the
Jacobi iterative method. Finally, we describe how to apply value iteration to
Pig.

Piglet
Piglet is very much like Pig except that it is played with a coin rather than

a die. The object of Piglet is to be the first player to reach 10 points. Each turn,
a player repeatedly flips a coin until either a tail is flipped or else the player
holds and scores the number of consecutive heads flipped.

The number of equations necessary to express the probability of winning in
each state is still too many for a pencil-and-paper exercise, so we simplify this
game further: The winner is the first to reach 2 points.

As before, let Pi,j,k be the player’s probability of winning if the player’s
score is i, the opponent’s score is j, and the player’s turn total is k. In the case
where i + k = 2, we have Pi,j,k = 1 because the player can simply hold and
win. In the general case where 0 ≤ i, j < 2 and k < 2 − i, the probability of a
player winning is

Pi,j,k = max (Pi,j,k,flip, Pi,j,k,hold),

where Pi,j,k,flip and Pi,j,k,hold are the probabilities of winning if one flips or
holds, respectively. The probability of winning if one flips is

Pi,j,k,flip = 1
2

[
(1− Pj,i,0) + Pi,j,k+1

]

The probability Pi,j,k,hold is just as before. Then the equations for the probabil-
ities of winning in each state are given as follows:

P0,0,0 = max
{

1
2

[
(1− P0,0,0) + P0,0,1

]
, 1− P0,0,0

}
,

P0,0,1 = max
{

1
2

[
(1− P0,0,0) + 1

]
, 1− P0,1,0

}
,

P0,1,0 = max
{

1
2

[
(1− P1,0,0) + P0,1,1

]
, 1− P1,0,0

}
, (1)

P0,1,1 = max
{

1
2

[
(1− P1,0,0) + 1

]
, 1− P1,1,0

}
,

P1,0,0 = max
{

1
2

[
(1− P0,1,0) + 1

]
, 1− P0,1,0

}
,

P1,1,0 = max
{

1
2

[
(1− P1,1,0) + 1

]
, 1− P1,1,0

}
.

Optimal Play of the Dice Game Pig 29

Once these equations are solved, the optimal policy is obtained by observing
which action maximizes max(Pi,j,k,flip, Pi,j,k,hold) for each state.

Value Iteration
Value iteration is an algorithm that iteratively improves estimates of the

value of being in each state. In describing value iteration, we follow Sutton
and Barto [1998], which we also recommend for further reading. We assume
that the world consists of states, actions, and rewards. The goal is to compute
which action to take in each state so as to maximize future rewards. At any
time, we are in a known state s of a finite set of states S. There is a finite set
of actions A that can be taken in any state. For any two states s, s′ ∈ S and
any action a ∈ A, there is a probability Pa

ss′ (possibly zero) that taking action a
will cause a transition to state s′. For each such transition, there is an expected
immediate rewardRa

ss′ .
We are not interested in just the immediate rewards; we are also interested to

some extent in future rewards. More specifically, the value of an action’s result
is the sum of the immediate reward plus some fraction of the future reward.
The discount factor 0 ≤ γ ≤ 1 determines how much we care about expected
future reward when selecting an action.

Let V (s) denote the estimated value of being in state s, based on the expected
immediate rewards of actions and the estimated values of being in subsequent
states. The estimated value of an action a in state s is given by

∑

s′

Pa
ss′

[
Ra

ss′ + γV (s′)
]
.

The optimal choice is the action that maximizes this estimated value:

max
a

∑

s′

Pa
ss′

[
Ra

ss′ + γV (s′)
]
.

This expression serves as an estimate of the value of being in state s, that is, of
V (s). In a nutshell, value iteration consists of revising the estimated values of
states until they converge, i.e., until no single estimate is changed significantly.
The algorithm is given as Algorithm 1.

Algorithm 1 repeatedly updates estimates of V (s) for each s. The variable
∆ is used to keep track of the largest change for each iteration, and ε is a small
constant. When the largest estimate change ∆ is smaller than ε, we stop revising
our estimates.

Convergence is guaranteed when γ < 1 and rewards are bounded [Mitchell
1997, §13.4], but convergence is not guaranteed in general when γ = 1. In the
case of Piglet and Pig, value iteration happens to converge for γ = 1.

30 The UMAP Journal 25.1 (2004)

Algorithm 1 Value iteration

For each s ∈ S, initialize V (s) arbitrarily.
Repeat

∆← 0
For each s ∈ S,

v ← V (s)
V (s)← maxa

∑
s′ Pa

ss′ [Ra
ss′ + γV (s′)]

∆← max (∆, |v − V (s)|)
until ∆ < ε

Applying Value Iteration to Piglet
Value iteration is beautiful in its simplicity, but we have yet to show how it

applies to Piglet. For Piglet with a goal of 2, the states are all (i, j, k) triples that
can occur in game play, where i, j and k denote the same game values as before.
Winning and losing states are terminal. That is, all actions taken in such states
cause no change and yield no reward. The set of actions is A = {flip, hold}.

Let us consider rewards carefully. If points are our reward, then we are
once again seeking to maximize expected points rather than maximizing the
expected probability of winning. Instead, in order to reward only winning, we
set the reward to be 1 for transitions from nonwinning states to winning states
and 0 for all other transitions.

The next bit of insight that is necessary concerns what happens when we
offer a reward of 1 for winning and do not discount future rewards, that is,
when we set γ = 1. In this special case, V (s) is the probability of a player
in s eventually transitioning from a nonwinning state to a winning state. Put
another way, V (s) is the probability of winning from state s.

The last insight we need is to note the symmetry of the game. Each player
has the same choices and the same probable outcomes. It is this fact that enables
us to use (1 − Pj,i,0) and (1 − Pj,i+k,0) in our Pig/Piglet equations. Thus, we
need to consider only the perspective of a single optimal player.

When we review our system of equations for Piglet, we see that value itera-
tion with γ = 1 amounts to computing the system’s left-hand-side probabilities
(e.g., Pi,j,k) from the right-hand-side expressions (e.g., max(Pi,j,k,flip, Pi,j,k,hold))
repeatedly until the probabilities converge. This specific application of value
iteration can be viewed as a generalization of the Jacobi iteration method for
solving systems of linear algebraic equations (see Burden and Faires [2001, §7.3]
or Kincaid and Cheney [1996, §4.6]).

The result of applying value iteration to Piglet is shown in Figure 2. Each
line corresponds to a sequence of estimates made for one of the win probabilities
for our Piglet equations. The interested reader can verify that the exact values,

P0,0,0 =
4
7
, P0,0,1 =

5
7
, P0,1,0 =

2
5
, P0,1,1 =

3
5
, P1,0,0 =

4
5
, P1,1,0 =

2
3
,

do indeed solve the system of equations (1).

Optimal Play of the Dice Game Pig 31

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

W
in

 P
ro

ba
bi

lit
y

Iteration

P0,0,1

P0,1,0

P1,0,0

P1,1,0

P0,1,1

P0,0,0

Figure 2. Value Iteration with Piglet (goal points = 2).

Finally, we note that the optimal policy is computed by observing which
action yields the maximum expected value for each state. In the case of Piglet
with a goal of 2, one should always keep flipping. For Pig, the policy is much
more interesting. Piglet with a goal of 10 also has a more interesting optimal
policy, although the different possible positive outcomes for rolls in Pig make
its policy more interesting still.

Applying Value Iteration to Pig
Value iteration can be applied to Pig much the same as to Piglet. What is

different is that Pig presents us with 505,000 equations. To speed convergence,
we can apply value iteration in stages, taking advantage of the structure of
equation dependencies.

Consider which states are reachable from other states. Players’ scores can
never decrease; therefore, the sum of scores can never decrease, so a state will
never transition to a state where the sum of the scores is less. Hence, the
probability of a win from a state with a given score sum is independent of the
probabilities of a win from all states with lower score sums. This means that
we can first perform value iteration only for states with the highest score sum.

In effect, we partition probabilities by score sums and compute each parti-
tion in descending order of score sums. First, we compute P99,99,0 with value
iteration. Then, we use the converged value of P99,99,0 to compute P98,99,0 and
P99,98,0 with value iteration. Next, we compute probabilities with the score
sum 196, then 195, etc., until we finally compute P0,0,k for 0 ≤ k ≤ 99.

Examining Figure 2, we can see that beginning game states take longer to

32 The UMAP Journal 25.1 (2004)

converge as they effectively wait for later states to converge. This approach of
performing value iteration in stages has the advantage of iterating values of
earlier game states only after those of later game states have converged.

This partitioning and ordering of states can be taken one step further. Within
the states of a given score sum, equations are dependent on the value of states
with either

• a greater score sum (which would already be computed), or

• the value of states with the players’ scores switched (e.g., in the case of a roll
of 1).

This means that within states of a given score sum, we can perform value
iteration on subpartitions of states as follows: For player scores i and j, value
iterate together allPi,j,k for all0 ≤ k < 100−iand allPj,i,k for all0 ≤ k < 100−j.

We solve this game using value iteration. Further investigation might seek
a more efficient solution technique or identify a special structure in these equa-
tions that yields a particularly simple and elegant solution.

The Solution
The solution to Pig is visualized in Figure 3. The axes are i (player 1 score),

j (player 2 score), and k (the turn total). The surface shown is the boundary
between states where player 1 should roll (below the surface) and states where
player 1 should hold (above the surface). We assume for this and following
figures that player 1 plays optimally. Player 1 assumes that player 2 will also
play optimally, although player 2 is free to use any policy.

Overall, we see that the “hold at 20” policy only serves as a good approxi-
mation to optimal play when both players have low scores. When either player
has a high score, it is advisable on each turn to try to win. In between these ex-
tremes, play is unintuitive, deviating significantly from the “hold at 20” policy
and being highly discontinuous from one score to the next.

Let us look more closely at the cross-section of this surface when we hold
the opponent’s score at 30 (Figure 4). The dotted line is for comparison with the
“hold at 20” policy. When the optimal player’s score is low and the opponent
has a significant lead, the optimal player must deviate from the “hold at 20”
policy, taking greater risks to catch up and maximize the expected probability of
a win. When the optimal player has a significant advantage over the opponent,
the optimal player maximizes the expected probability of a win by holding at
turn totals significantly below 20.

It is also interesting to consider that not all states are reachable with opti-
mal play. The states that an optimal player can reach are shown in Figure 5.
These states are reachable regardless of what policy the opponent follows. The
reachable regions of cross-sectional Figure 4 are shaded.

To see why many states are not reachable, consider that a player starts a turn
at a given (i, j, 0) and travels upward in k until the player holds or rolls a 1. An

Optimal Play of the Dice Game Pig 33

Figure 3. Two views of the roll/hold boundary for optimal Pig play policy.

34 The UMAP Journal 25.1 (2004)

Figure 4. Cross-section of the roll/hold boundary, opponent’s score = 30.

optimal player following this policy will not travel more than 6 points above
the boundary. For example, an optimal player will never reach the upper-left
tip of the large “wave” of Figure 4. Only suboptimal risk-seeking play will
lead to most states on this wave, but once reached, the optimal decision is to
continue rolling towards victory.

Also, consider the fact that an optimal player with a score of 0 will never
hold with a turn total less than 21, regardless of the opponent’s score. This
means that an optimal player will never have a score between 0 and 21. We can
see these and other such gaps in Figure 5.

Combining the optimal play policy with state reachability, we can visualize
the relevant part of the solution as in Figure 6. Note the wave tips that are not
reachable.

The win probabilities that are the basis for these optimal decisions are vi-
sualized in Figure 7. Probability contours for this space are shown for 3%, 9%,
27%, and 81%. For instance, the small lower-leftmost surface separates states
having more or less than a 3% win probability.

If both players are playing optimally, the starting player wins 53.06% of the
time; that is, P0,0,0 ≈ 0.5306. We have also used the same technique to analyze
the advantage of the optimal policy versus a “hold at 20” policy, where the
“hold at 20” player is assumed to hold at less than 20 when the turn total is
sufficient to reach the goal. When the optimal player goes first, the optimal
player wins 58.74% of the time. When the “hold at 20” player goes first, the
“hold at 20” player wins 47.76% of the time. Thus, if the starting player is
chosen using a fair coin, the optimal player wins 55.49% of the time.

Conclusions
The simple game of Pig gives rise to a complex optimal policy. A first look

at the problem from a betting perspective yields a simple “hold at 20” policy,
but this policy maximizes expected points per turn rather than the probability
of winning. The optimal policy is instead derived by solving for the probability

Optimal Play of the Dice Game Pig 35

Figure 5. Two views of states reachable by an optimal Pig player.

36 The UMAP Journal 25.1 (2004)

Figure 6. Reachable states where rolling is optimal.

Figure 7. Win probability contours for optimal play (3%, 9%, 27%, 81%).

Optimal Play of the Dice Game Pig 37

of winning for every possible game state. This amounts to finding the intersec-
tion of folded hyperplanes within a hypercube; the method of value iteration
converges and provides a solution. The interested reader may play an optimal
computer opponent, view visualizations of the optimal policy, and learn more
about Pig at http://cs.gettysburg.edu/projects/pig .

Surprising in its topographical beauty, this optimal policy is approximated
well by the “hold at 20” policy only when both players have low scores. In the
race to 100 points, optimal play deviates significantly from this policy and is far
from intuitive in its details. Seeing the “landscape” of this policy is like seeing
the surface of a distant planet sharply for the first time having previously seen
only fuzzy images. If intuition is like seeing a distant planet with the naked eye,
and a simplistic, approximate analysis is like seeing it with a telescope, then
applying the tools of mathematics is like landing on the planet and sending
pictures home. We will forever be surprised by what we see!

Appendix: Pig Variants and Related Work
We present some variants of Pig. Although the rules presented are for two

players, most games originally allow for or are easily extended to more than
two players.

The rules of Pig, as we have described them, are the earliest noncommercial
variant that we have found in the literature. John Scarne wrote about this
version of Pig [1945], recommending that players determine the first player by
the lowest roll of the die. Scarne also recommended that all players should be
allowed an equal number of turns. Thus, after the turn where one player holds
with a score ≥ 100, remaining players have the opportunity to exceed that or
any higher score attained. This version also appears in Bell [1979], Diagram
Visual Information Ltd [1979], and Knizia [1999]. Boyan’s version [1998] differs
only in that a roll of 1 ends the turn with a one-point gain.

Scarne’s version also serves as the core example for a unit on probability
in the first year of the high-school curriculum titled Interactive Mathematics
Program r© [Fendel et al. 1997]. However, the authors say about their activity,
“The Game of Pig,” that it “ . . . does not define a specific goal In this
unit, ‘best’ will mean highest average per turn in the long run [italics in original].”
That is, students learn how to analyze and maximize the expected turn score.
Fendel et al. also independently developed the jeopardy coin game Piglet for
similar pedagogical purposes, giving it the humorous name “Pig Tails.” “Fast
Pig” is their variation in which each turn is played with a single roll of n dice;
the sum of the dice is scored unless a 1 is rolled.

Parker Brothers Pig Dice
Pig Dice r© (c©1942, Parker Brothers) is a 2-dice variant of Pig that has had

surprisingly little influence on the rules of modern variants, in part because

38 The UMAP Journal 25.1 (2004)

the game requires specialized dice: One die has a pig head replacing the 1;
the other has a pig tail replacing the 6. Such rolls are called Heads and Tails,
respectively. The goal score is 100; yet after a player has met or exceeded 100,
all other players have one more turn to achieve the highest score.

As in Pig, players may hold or roll, risking accumulated turn totals. How-
ever:

• There is no undesirable single die value; rather, rolling dice that total 7 ends
the turn without scoring.

• Rolling a Head and a Tail doubles the current turn total.

• Rolling just a Head causes the value of the other die to be doubled.

• Rolling just a Tail causes the value of the other die to be negated.

• The turn total can never be negative; if a negated die would cause a negative
turn total, the turn total is set to 0.

• All other non-7 roll totals are added to the turn total.

Two Dice, 1 is Bad
According to game analyst Butler [personal communication, 2004], one of

the simplest and most common variants, which we will call “2-dice Pig,” was
produced commercially under the name “Pig” around the 1950s. The rules are
the same as our 1-die Pig, except:

• Two standard dice are rolled. If neither shows a 1, their sum is added to the
turn total.

• If a single 1 is rolled, the player’s turn ends with the loss of the turn total.

• If two 1s are rolled, the player’s turn ends with the loss of the turn total and
of the entire score.

In 1980–81, Butler analyzed 2-dice Pig [2001], computing the turn total at
which one should hold to reach 100 points in n turns on average given one’s
current score. However, he gives no guidance for determining n. Beardon and
Ayer [2001b] also presented this variant under the name “Piggy Ones.” They
[2001a] and Butler also treated a variant where 6 rather than 1 is the undesirable
roll value.

W.H. Schaper’s Skunk r© (c©1953, W.H. Schaper Manufacturing Co.) is a
commercial variant that elaborates on 2-dice Pig as follows:

• Players begin with 50 poker chips.

• For a single 1 roll, in addition to the aforementioned consequences, the
player places one chip into the center “kitty,” unless the other die shows a 2,
in which case the player places two chips.

Optimal Play of the Dice Game Pig 39

• For a double 1 roll, in addition to the aforementioned consequences, the
player places four chips into the center kitty.

• The winning player collects the kitty, five chips from each player with a
nonzero score, and ten chips from each player with a zero score.

Presumably, a player who cannot pay the required number of chips is elimi-
nated from the match. The match is played for a predetermined number of
games, or until all but one player has been eliminated. The player with the
most chips wins the match.

Bonuses for Doubles
Skip Frey [1975] describes a 2-dice Pig variation that differs only in how

doubles are treated and how the game ends:

• If two 1s are rolled, the player adds 25 to the turn total and it becomes
the opponent’s turn. (Knizia [1999] calls this a variant of Big Pig, which is
identical to Frey’s game except that the player’s turn continues after rolling
double 1s.)

• If other doubles are rolled, the player adds twice the value of the dice to the
turn total, and the player’s turn continues.

• Players are permitted the same number of turns. So if the first player scores
100 or more points, the second player must be allowed the opportunity to
exceed the first player’s score and win.

A popular commercial variant, Pass the Pigs r© (c©1995, David Moffat En-
terprises and Hasbro, Inc.), was originally called “PigMania” r© (c©1977, David
Moffat Enterprises). Small rubber pigs are used as dice. When rolled, each pig
can come to rest in a variety of positions with varying probability: on its right
side, on its left side, upside down (“razorback”), upright (“trotter”), balanced
on the snout and front legs (“snouter”), and balanced on the snout, left leg,
and left ear (“leaning jowler”). The combined positions of the two pigs lead to
various scores.

In 1997, 52 6th-grade students of Dean Ballard at Lakeside Middle School in
Seattle, WA, rolled such pigs 3939 times. In the order of roll types listed above,
the number of rolls were: 1344, 1294, 767, 365, 137, and 32 [Wong n.d.]. In Pass
the Pigs, a pig coming to rest against another is called an “oinker” and results
in the loss of all points. Since the 6th-graders’ data are for single rolls, no data
on the number of “oinkers” is given. However, David R. Bellhouse’s daughter
Erika rolled similar “Tequila Pigs” 1435 times in sets of 7 with respective totals
593, 622, 112, 76, 27, and 2. The remaining 3 rolls were “oinkers,” leaning on
other pigs at rest in standard positions [Bellhouse 1999].

PigMania r© is similar to 2-Dice Pig, in that a roll of a left side and a right
side in PigMania has the same consequences as rolling a 1 in 2-Dice Pig (the

40 The UMAP Journal 25.1 (2004)

turn ends with loss of the turn total), and a roll with pigs touching has the same
consequences as rolling double 1s (the turn ends with loss of the turn total and
of the entire score). PigMania is similar to Frey’s variant in that two pigs in the
same non-side configuration score double what they would individually.

Maximizing Points with Limited Turns
Dan Brutlag’s SKUNK [1994]—not to be confused with W.H. Schaper’s

Skunk r©—is a variant of Pig that follows the rules of 2-Dice Pig except:

• Each player gets only five turns, one for each letter of SKUNK.

• The highest score at the end of five turns wins.

Brutlag describes the game as part of an engaging middle-school exercise that
encourages students to think about chance, choice, and strategy; in personal
correspondence, he mentions having been taught the game long before 1994.
He writes, “To get a better score, it would be useful to know, on average, how
many good rolls happen in a row before a ‘one’ or ‘double ones’ come up”
[1994].

However, students need to realize that optimal play of SKUNK is not con-
ditioned on how many rolls one has made but rather on the players’ scores,
the current player’s turn total, and how many turns remain for each player.
It is important to remind students that dice do not “know” how many times
they have been rolled, that is, dice are stateless. The false assumption that the
number of prior rolls makes the probability of a 1 being rolled more or less
likely is an example of the well-known gambler’s fallacy [Blackburn 1994].

For example, suppose that a turn total of 10 has been achieved. The decision
of whether to roll again or stay should not be affected by whether the 10 was
realized by one roll of 6–4 or by two rolls of 3–2; the same total is at stake
regardless. Although one might argue that the number of turn rolls is an easy
feature of the game for young students to grasp, the turn total is similarly easy
and moreover is a relevant feature for decision-making.

Falk and Tadmor-Troyanski [1999] follow Brutlag’s SKUNK with analysis
of optimizing the score for their variant THINK. In THINK, both players take
a turn simultaneously. One player rolls the dice and both use the result, each
deciding separately between rolls whether to hold or not. A turn continues
until both players hold or a 1 is rolled. As Knizia [1999] did for the original Pig,
Falk and Tadmor-Troyanski seek play that optimizes the expected final score,
blind to all other considerations. They first treat the case where a player must
decide before the game begins when to stop rolling for each turn, as if the player
were playing blindfolded. This case could be considered a two-dice variant of
n-dice Fast Pig where each player chooses n for each turn. In this circumstance,
the number of turn rolls is a relevant feature of the decision because it is the
only feature given. They conclude that three rolls are appropriate for all but the
last turn, when one should roll just twice to maximize the expected score. They

Optimal Play of the Dice Game Pig 41

then remove the blindfold assumption and perform an odds-based analysis
that shows that the player should continue rolling if s + 11t ≤ 200, where s is
the player score and t is the turn total.

Single Decision Analysis Versus Dynamic Programming

While the single-roll, odds-based analyses of Falk and Tadmor-Troyanski
[1999] and Knizia [1999] yield policies optimizing expected score for a single
turn, they do not yield policies optimizing score over an arbitrary number of
turns. We illustrate by applying dynamic programming to a solitaire version
of THINK.

Let Er,s,t be the player’s expected future score gain if the turn is r, the
player’s score is s, and the player’s turn total is t. Since the game is limited to
five turns, we have Er,s,t = 0 for r > 5. For 1 ≤ r ≤ 5, for the optimal expected
future score gain, we want

Er,s,t = max (Er,s,t,roll, Er,s,t,hold)

where Er,s,t,roll and Er,s,t,hold are the expected future gain if one rolls and holds,
respectively. These expectations are given by:

Er,s,t,roll =
1
36

[
1(4 + Er,s,t+4) + 2(5 + Er,s,t+5) + 3(6 + Er,s,t+6)

+ 4(7 + Er,s,t+7) + 5(8 + Er,s,t+8) + 4(9 + Er,s,t+9)
+ 3(10 + Er,s,t+10) + 2(11 + Er,s,t+11) + 1(12 + Er,s,t+12)

+ 10(−t + Er+1,s,0) + 1(−s− t + Er+1,0,0)
]
,

Er,s,t,hold = Er+1,s+t,0.

Since the state space has no cycles, value iteration is unnecessary. Comput-
ing the optimal policy π∗ through dynamic programming, we calculate the
expected gain Eπ∗

1,0,0 = 36.29153313960543. If we instead apply the policy π≤

of the single-turn odds-based analysis, rolling when s + 11t ≤ 200, we calcu-
late the expected gain Eπ≤

1,0,0 = 36.29151996719233. These numbers are so close
that simulating more than 109 games with each policy could not demonstrate
a significant statistical difference in the average gain.

However, two factors give support to the correctness of this computation.
First, we observe that the policy π≤ is risk-averse with respect to the com-
puted optimal policy π∗. According to the odds-based analysis, it does not
matter what one does if s + 11t = 200, and the authors state “you may flip
a coin to decide”. The above computation assumed one always rolls when
s + 11t = 200. If this analysis is correct, there should be no difference in ex-
pected gain if we hold in such situations. However, if we instead apply the
policy π< of this odds-based analysis, rolling when s + 11t < 200, we com-
pute Eπ<

1,0,0 = 36.29132666694349, which is different and even farther from the
optimal expected gain.

42 The UMAP Journal 25.1 (2004)

Second, we can more easily observe the difference between optimal and
odds-based policies if we extend the number of turns in the game to 20. Then
Eπ∗

1,0,0 = 104.78360865008132 and Eπ≤

1,0,0 = 104.72378302093477. After 2 × 108

simulated games with each policy, the average gains were 104.784846975 and
104.72618221, respectively.

Of special note is the good quality of the approximation such an odds-
based analysis gives us for optimal THINK score gain, given such simple, local
considerations. For THINK reduced to four turns, we compute that policies π∗

andπ≤ reach the same game states and dictate the same decisions in those states.
Similarly examining Knizia’s Pig analysis for maximizing expected score, we
find the same deviation of optimal versus odds-based policies for Pig games
longer than eight turns.

Miscellaneous Variants
Yixun Shi [2000] describes a variant of Pig that is the same as Brutlag’s

SKUNK except:

• There are six turns.

• A roll that increases the turn total does so by the product of the dice values
rather than by the sum.

• Double 1s have the same consequences as a single 1 in 2-Dice Pig (loss of
turn total, end of turn).

• Shi calls turns “games” and games “matches”. We adhere to our terminology.

Shi’s goal is not so much to analyze this Pig variant as to describe how to
form heuristics for good play. In particular, he identifies features of the game
(e.g., turn total, score differences, and distance from expected score per turn),
combining them into a function to guide decision making. He parametrizes
the heuristics and evaluates parameters empirically through actual play.

Ivars Peterson describes Piggy [2000], which varies from 2-Dice Pig in that
there is no bad dice value. However, doubles have the same consequences as a
single 1 in 2-dice Pig. Peterson suggests comparing Piggy play with standard
dice versus nonstandard Sicherman dice, for which one die is labeled 1, 2, 2, 3,
3, and 4 and the other is labeled 1, 3, 4, 5, 6, and 8. Although the distribution of
roll sums is the same for Sicherman and standard dice, doubles are rarer with
Sicherman dice.

Jeopardy Dice Games: Race and Approach
Pig and its variants belong to a class of dice games called jeopardy dice

games [Knizia 1999], where the dominant decision is whether or not to jeop-
ardize all of one’s turn total by continuing to roll for a potentially better turn

Optimal Play of the Dice Game Pig 43

total. We suggest that jeopardy dice games can be further subdivided into two
main subclasses: jeopardy race games and jeopardy approach games.

Jeopardy Race Games
In jeopardy race games, the object is to be the first to meet or exceed a goal score.

Pig is the simplest of these. Most other jeopardy race games are variations of
the game Ten Thousand (the name refers to the goal score; Five Thousand is
a common shortened variant). In such games, a player rolls dice (usually six),
setting aside various scoring combinations of dice (which increase the turn total)
and re-rolling the remaining dice, until the player either holds (and scores the
turn total) or reaches a result with no possible scoring combination and thus
loses the turn total. Generally, if all dice are set aside in scoring combinations,
the turn continues with all dice back in play.

According to Knizia [1999], Ten Thousand is also called Farkle, Dix Mille,
Teutonic Poker, and Berliner Macke. Michael Keller [n.d.; 1998] lists many
commercial variants of Ten Thousand: $Greed (1980, Avalon Hill), Zilch (1980,
Twinson), Bupkis (1981, Milco), Fill or Bust (1981, Bowman Games)— also
known as Volle Lotte (1994, Abacus Spiele), High Rollers (1992, El Rancho Es-
condido Ents.), Six Cubes (1994, Fun and Games Group), Keepers (Avid Press),
Gold Train (1995, Strunk), and—the most popular—Cosmic Wimpout (1984,
C3 Inc.). Sid Sackson also described the Ten Thousand commercial variants
Five Thousand (1967, Parker Brothers) [Sackson 1969] and Top Dog (John N.
Hanson Co.) [Sackson 1982].

Additional commercial jeopardy race games include Sid Sackson’s Can’t
Stop r© (1980, Parker Brothers; 1998, Franjos Spieleverlag), and Reiner Knizia’s
Exxtra r© (1998, Amigo Spiele).

It is interesting to consider the relationship between jeopardy race dice
games and primitive board “race games” [Bell 1979; Parlett 1999] that use dice
to determine movement. Parlett writes, “It seems intuitively obvious that race
games evolved from dice games” [1999, 35]. In the simplest primitive board
games, the board serves primarily to track progress toward the goal, as a form of
score pad. However, with the focus of attention drawn to the race on the board,
Parlett and others suggest, many variations evolved regarding the board. Thus,
jeopardy dice-roll elements may have given way to jeopardy board elements
(e.g., one’s piece landing on a bad space, or being landed on by another piece).
In whichever direction the evolution occurred, it is reasonable to assume that
jeopardy race games have primitive origins.

Jeopardy Approach Games
In jeopardy approach games, the object is to most closely approach a goal

score without exceeding it. These include Macao, Twenty-One (also known as
Vingt-et-Un, Pontoon, Blackjack), Sixteen (also known as Golden Sixteen), Octo,
Poker Hunt [Knizia 1999], Thirty-Six [Scarne 1980], and Altars [Imbril n.d.].
Macao, Twenty-One, and Thirty-Six are most closely related to the card game

44 The UMAP Journal 25.1 (2004)

Blackjack. The playing-card version of Macao was very popular in the 17th
and 18th centuries [Scarne 1980]; the card game Vingt-et-Un gained popularity
in the mid-18th century as a favorite game of Madame du Barry and Napoleon
[Parlett 1991]. Parlett writes, “That banking games are little more than dice
games adapted to the medium of cards is suggested by the fact that they are
fast, defensive rather than offensive, and essentially numerical, suits being
often irrelevant” [1999, 76].

Computational Challenges
Optimal play for Macao and Sixteen has been computed by Neller and his

students at Gettysburg College through a similar application of value iteration.
Other non-jeopardy dice games have been solved with dynamic programming,
e.g., Campbell [2002]. However, many dice games are not yet solvable because
of the great number of reachable game states and the memory limitations of
modern computers.

Memory requirements for computing a solution may be reduced through
various means. For instance, the partitioning technique that we described can
be used to hold only those states in memory that are necessary for the solution
of a given partition. Also, one can make intense use of vast, slower secondary
memory. That is, one can trade off computational speed for greater memory.

One interesting area for future work is the development of techniques to
compute approximately optimal policies. We have shown that many possible Pig
game states are not reachable through optimal play, but it is also the case that
many reachable states are improbable. Simulation-based techniques such as
Monte Carlo and temporal difference learning algorithms [Sutton and Barto
1998] do not require probability models for state transitions and can converge
quickly for frequently occurring states. Approximately optimal play for more
difficult games, such as Backgammon, can be achieved through simulation-
based reinforcement learning techniques combined with feature-based state-
abstractions [Tesauro 2002; Boyan 2002].

References
Beardon, Toni, and Elizabeth Ayer. 2001a. Game of PIG—Sixes. NRICH (June

2001 and May 2004). http://www.nrich.maths.org/public/viewer.
php?obj_id=1258 .

———. 2001b. Game of PIG—Ones: Piggy Ones and Piggy Sixes: Should you
change your strategy? NRICH (July 2001). http://www.nrich.maths.
org/public/viewer.php?obj_id=1260 .

Bell, Robert Charles. 1979. Board and Table Games from Many Civilizations. Re-
vised ed. New York: Dover Publications, Inc.

Optimal Play of the Dice Game Pig 45

Bellhouse, David R. 1999. Il campanile statistico: What I did on my summer
holidays. Chance 12 (1): 48–50.

Bellman, Richard. 1957. Dynamic Programming. Princeton, NJ: Princeton Uni-
versity Press.

Bertsekas, D.P. 1987. Dynamic Programming: Deterministic and Stochastic Models.
Englewood Cliffs, NJ: Prentice-Hall.

Blackburn, Simon. 1994. The Oxford Dictionary of Philosophy. New York: Oxford
University Press.

Boyan, Justin A. 1998. Learning evaluation functions for global optimization.
Ph.D. thesis. Carnegie Mellon University. Pittsburgh, PA. Carnegie Mellon
Tech. Report CMU-CS-98-152.

———. 2002. Least-squares temporal difference learning. Machine Learning
49 (2/3): 233–246.

Brutlag, Dan. 1994. Choice and chance in life: The game of “skunk”. Mathematics
Teaching in the Middle School 1 (1): 28–33.

Burden, Richard L., and J. Douglas Faires. 2001. Numerical Analysis. 7th ed.
Pacific Grove, CA: Brooks/Cole Publishing Co.

Butler, Bill. 2001. Durango Bill’s “Pig (Pig-out)” analysis. http://www.
durangobill.com/Pig.html.

Campbell, Paul J. 2002. Farmer Klaus and the mouse. The UMAP Journal 23 (2):
121–134. 2004. Errata. 24 (4): 484.

Diagram Visual Information Ltd. 1979. The Official World Encyclopedia of Sports
and Games. London: Paddington Press.

Falk, Ruma, and Maayan Tadmor-Troyanski. 1999. THINK: A game of choice
and chance. Teaching Statistics 21 (1): 24–27.

Fendel, Dan, Diane Resek, Lynne Alper, and Sherry Fraser. 1997. The Game of
Pig. Teacher’s Guide. Interactive Mathematics Program, Year 1. Berkeley, CA:
Key Curriculum Press.

Frey, Skip. 1975. How to Win at Dice Games. North Hollywood, CA: Wilshire
Book Co. 1997. Reprint.

Imbril, Blacky. n.d. Altars. http://members.aol.com/dicetalk/rules/
altars.txt .

Keller, Michael. n.d. Ten Thousand. http://members.aol.com/dicetalk/
rules/10000.txt .

46 The UMAP Journal 25.1 (2004)

———. 1998. Ten Thousand games to play with dice. WGR 13: 22–23, 37.
Published by Michael Keller, 1227 Lorene Drive, Pasadena, MD 21222;
fomalhaut@earthlink.net .

Kincaid, David R., and E. Ward Cheney. 1996. Numerical Analysis: Mathematics
of Scientific Computing. 2nd ed. Pacific Grove, CA: Brooks/Cole Publishing
Co.

Knizia, Reiner. 1999. Dice Games Properly Explained. Brighton Road, Lower
Kingswood, Tadworth, Surrey, KT20 6TD, U.K.: Elliot Right-Way Books.

Mitchell, Tom M. 1997. Machine Learning. New York: McGraw-Hill.

von Neumann, John, and Oskar Morgenstern. 1944. Theory of Games and Eco-
nomic Behavior. Princeton, NJ: Princeton University Press.

Parlett, David. 1991. A History of Card Games. New York: Oxford University
Press.

———. 1999. The Oxford History of Board Games. New York: Oxford University
Press.

Peterson, Ivars. 2000. Weird dice. Muse Magazine. (May/June): 18.

Russell, Stuart, and Peter Norvig. 2003. Artificial Intelligence: A Modern Ap-
proach. 2nd ed. Upper Saddle River, NJ: Prentice Hall.

Sackson, Sid. 1969. A Gamut of Games. New York: Pantheon Books. 1982. 2nd
ed. New York: Pantheon Books.

Scarne, John. 1945. Scarne on Dice. Harrisburg, PA: Military Service Publishing
Co. 1980. 2nd ed. New York: Crown Publishers, Inc.

Shi, Yixun. 2000. The game PIG: Making decisions based on mathematical
thinking. Teaching Mathematics and Its Applications 19 (1): 30–34.

Sutton, Richard S., and Andrew G. Barto. 1998. Reinforcement Learning: An
Introduction. Cambridge, MA: MIT Press.

Tesauro, Gerald J. 2002. Programming backgammon using self-teaching neural
nets. Artificial Intelligence 134: 181–199.

Wong, Freddie. n.d. Pass the Pigs — Probabilities. http://members.tripod.
com/~passpigs/prob.html .

Optimal Play of the Dice Game Pig 47

About the Authors

Todd W. Neller is Assistant Professor of Computer
Science at Gettysburg College. A Cornell University
Merrill Presidential Scholar, he received a B.S. in Com-
puter Science with distinction in 1993. He received
a Stanford University Lieberman Fellowship in 1998,
where he received the George E. Forsythe Memorial
Award for excellence in teaching and a Ph.D. in Com-
puter Science in 2000. His thesis concerned extension
of artificial intelligence search algorithms to hybrid
dynamical systems, and the refutation of hybrid sys-
tem properties through simulation and information-
based optimization. Recent works have concerned
the application of reinforcement learning techniques
to the control of optimization and search algorithms.

Clifton G.M. Presser is also Assistant Professor
of Computer Science at Gettysburg College. He re-
ceived a B.S. in Mathematics and Computer Science
from Pepperdine University in 1993. Clif received his
Ph.D. in Computer Science at the University of South
Carolina in 2000, where he received the Outstand-
ing Graduate Student Award in the same year. Clif’s
dissertation research was on automated planning in
uncertain environments. Currently, his research con-
cerns computer visualization of high-dimensional ge-
ometry, algorithms and information.

48 The UMAP Journal 25.1 (2004)

