
CPSC 390 – Programming Assignment #2

Due, Tuesday, November 22, 2011 by Midnight

Write a recursive descent parser that will parse statement lists using the grammar:

 <stmt_list>  <stmt> { ; <stmt> }

 <stmt>  while <while_stmt> | read <iolist> | write <iolist> | if <if_stmt>

 <while_stmt>  <boolean_expr> do <stmt_body>

 <boolean_expr>  id <relop> <value>

 <relop>  < | > | = | <= | >= | <>

 <value>  id | int

 <stmt_body>  begin <stmt_list> end

 <iolist>  (id { , id })

 <if_stmt>  <boolean_expr> then <stmt_body>

Input to the parser will be a stream of tokens (these are the terminals in the grammar) represented by the

following code:

 Token Code Token Code _

 ; 1 = 11

 while 2 <= 12

 read 3 >= 13

 write 4 <> 14

 if 5 then 15

 do 6 begin 16

 id 7 end 17

 int 8 (18

 < 9) 19

 > 10 , 20

For example: A statement of the form: if a = b then write (c) would be represented as

5 7 11 7 15 4 18 7 19

(These numbers may or may not be on the same line in the input file.)

Details:
1. Write a function for each variable (nonterminal) in the grammar. The functions should return (either

through a parameter or as a return value) a boolean value to indicate whether the parse was successful or

not. Each function should have available the current token (generally as a parameter).

2. Write a driver that contains any initializations necessary, calls "gettoken" to get the first token (note –

in this simplified version, all gettoken does is read in the code – in a "real" parser, gettoken would be a

lexical analyzer that would read the input and send a code indicating the token), then calls the function for

<stmt_list> (this is the start symbol in this grammar for statement lists). The driver should print a

message about the success of the parse or about the number of errors encountered.

3. Print out a trace of the parse with indentation to indicate the levels within the parse. Do this by putting

print statements at the beginning and end of each function. For example, a parse may look like the

following:

 Parse begins…

 Enter statement list

 Enter statement

 Enter while statement

 Enter boolean expression

 Enter relop

 Exit relop

 Enter value

 Exit value

 Exit boolean expression

 Enter statement body

 Enter statement list

 Enter statement

 …..

 Exit statement

 Exit statement list

 Exit statement body

 Exit while statement

 Exit statement

 Exit statement list

 Parse complete … no errors

4. Error recovery: When a specific terminal symbol is expected and is not found, print a message stating

which symbol is expected, set error flags and an error count, then recurse back to the function for

statement list (this should be a natural result of your if … then … else's). In statement list, call a function

to flush the input to the next semicolon (call gettoken until the next semicolon is encountered (that is

ignore all tokens remaining in the statement you were trying to parse)). (In some cases, you may not want

to go all the way back to statement list – you can pick the parse back up earlier by writing a flush function

that flushes to a token you specify in the parameter list.)

Additional Requirements:

 The program must be written in C++.

 Input will be from a file. Your program should prompt for the file name.

 Your program must be documented appropriately and use good programming practices. See the

documentation and style guidelines posted on the course web page.

