S(1) = 3 S(n) = 5 + S(n-1) Expand: S(n) = 5 + S(n-1) = 5 + (____________________________________) (expand) = _____________________________________________ (expand again) General form: _________________________________________________. To get the S term to the base case, let k = ___________________. This gives ____________________________________________________________________________ which is the guess.Verify that given the definition for S above, S(n) = _______________________.
Base case (n=1): _______________________________________ Inductive Step: (Hint: If the guess holds for k, it also holds for k+1. Write this out mathematically using the actual guess.) _______________________________________________________________________________. Proof: By the definition of S, S(k+1) = _____________________________________________. By the inductive hypothesis, _________________________________________________. Substituting into line 1, this gives S(k+1) = _______________________________ = (simplify) ______________________________________________________________________________.