1. A vertex, \(v \), in an undirected, connected graph \(G \) is a cut-vertex iff the graph \(G - v \), i.e., the graph obtained by removing from \(G \) the vertex \(v \) and all edges incident on \(v \), is not connected.

The complement of a graph \(G \), denoted by \(\bar{G} \), is the graph that has the same vertex set as \(G \), and for any two vertices, \(x \) and \(y \), \(xy \) is an edge in \(\bar{G} \) iff \(xy \) is not an edge in \(G \).

Prove or disprove: If \(v \) is a cut-vertex of an undirected, connected, loopless graph \(G \), then \(v \) is not a cut-vertex of \(\bar{G} \).

2. Suppose \(v \) is a vertex of an undirected, connected, loopless graph \(G \). Prove or disprove: \(v \) has a neighbour in every component of \(G - v \).

3. Suppose \(G \) is a graph such that the degree of every vertex is at least \(k \). Prove or disprove: \(G \) contains a path of length at least \(k \). (Recall that a path in \(G \) of length \(t \) is a sequence of distinct vertices \(v_0, v_1, \ldots, v_t \) such that for each \(i, 0 \leq i < t \), \(v_i v_{i+1} \) is an edge in \(G \).)

4. Suppose \(G \) is a graph whose vertex set is the set of permutations of \(\{1, \ldots, n\} \), with two permutations \(a_1, \ldots, a_n \) and \(b_1, \ldots, b_n \) adjacent (connected by an edge) iff one permutation can be obtained from the other by interchanging a pair of adjacent entries. Prove or disprove: \(G \) is connected.