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Channel Assignment for Wireless Networks Modelled as
d-dimensional Square Grids

Abstract

In this paper, we study the problem of channel assignment for wireless networks modelled as d-dimensional
grids. In particular, for d-dimensional square grids, we present optimal assignments that achieve a channel
separation of 2 for adjacent stations where the reuse distance is 3 or 4. We also introduce the notion of
a colouring schema for d-dimensional square grids, and present an algorithm that assigns colours to the
vertices of the grid satisfying the schema constraints.

1 Introduction

The enormous growth of wireless networks has made the efficient use of the scarce radio spectrum important.
A “Frequency Assignment Problem” (FAP) models the task of assigning frequencies (channels) from a radio
spectrum to a set of transmitters and receivers, satisfying certain constraints [8]. The main difficulty in an
efficient use of the radio spectrum is the interference caused by unconstrained simultaneous transmissions.
Interferences can be eliminated (or at least reduced) by means of suitable channel assignment techniques,
which partition the given radio spectrum into a set of disjoint channels that can be used simultaneously by
the stations while maintaining acceptable radio signals. Since radio signals get attenuated over distance,
two stations in a network can use the same channel without interferences provided the stations are spaced
sufficiently apart. Stations that use the same channel are called co-channel stations. The minimum distance
at which a channel can be reused with no interferences is called the co-channel reuse distance (or simply
reuse distance) and is denoted by o.

In a dense network — a network where there are a large number of transmitters and receivers in a small
area — interference is more likely. Thus, reuse distance needs to be high in such networks. Moreover, channels
assigned to nearby stations must be separated in value by at least a gap which is inversely proportional to the
distance between the two stations. A minimum channel separation §; is required between channels assigned
to stations at distance 4, with ¢ < o, such that §; decreases when ¢ increases [7]. The purpose of channel
assignment algorithms is to assign channels to transmitters in such a way that (1) the co-channel reuse
distance and the channel separation constraints are satisfied, and (2) the span of the assignment, defined to
be the difference between the highest and the lowest channels assigned, is as small as possible [2].

In this paper, we investigate the channel assignment problem, described informally above, for networks
that can be modelled as grids in d dimensions, d > 3. In Section 3 we define the infinite d-dimensional
square and cellular grids, and show that a solution for the channel assignment problem for the d-dimensional
square (cellular) grid places an upper bound on solutions for the problem for a suitable d’-dimensional cel-
lular (square) grid. These results partly motivate our study of the channel assignment problem in higher
dimensional grids. Another motivation is that when the networks of several service providers overlap geo-
graphically, they must use different channels for their clients. The overall network can then be modelled in
a suitably higher dimension.

The main focus of the paper is a study of the problem for networks arranged as d-dimensional square
grids. We consider the restricted problem requiring a channel separation of 1 for all but adjacent stations,
and a larger (than 1) separation for adjacent stations. In Section 4, we present optimal assignments for d-
dimensional square grids for o = 3,4 with a channel separation constraint of 2 for adjacent stations. Finally,
in Section 4.5, we introduce the notion of a colouring schema for d-dimensional square grids and present an
algorithm that assigns colours to the vertices of the grid satisfying the schema constraints.

2 Preliminaries

Formally, the channel assignment problem with separation (CAPS) can be modelled as an appropriate colour-
ing problem on an undirected graph G = (V,E) representing the network topology, whose vertices in V
correspond to stations, and edges in E correspond to pairs of stations that can hear each other’s transmis-
sion [2]. For a graph G, we will denote the distance between any two vertices in the graph, i.e., the number
of edges in a shortest path between the two vertices, by dg(-,-). (When the context is clear, we will denote
the distance as simply d(-,-).) CAPS is then defined as:



-

CAPS (G,0,0)

Given an undirected graph G, an integer ¢ > 1, and a vector of positive integers 5= (61,02, --,05,_1),
find an integer g > 0 so that there is a function f: V — {0,..., g}, such that for all u,v € G,
for each i, 1 <i <o — 1, if d(u,v) = i, then |f(u) — f(v)| > 6.

This assignment is referred to as a g-L(d1,02,...,d,—1) colouring of the graph G [6], and CAPS (G, o, S’) is
sometimes referred to as the L(g) colouring problem for G. Note that a g-L(d1,d2,...,0,—1) uses only the
(9+1) colours in the set {0, ..., g}, but does not necessarily use all the (g+1) colours. A ¢g-L(d1,02,...,05-1)
colouring of G is optimal iff g is the smallest number witnessing a solution for CAPS (G, o, 5’)

Finding the optimal colouring for general graphs has been shown to be N P-complete. The problem
remains N P-complete even if the input graphs are restricted to planar graphs, bipartite graphs, chordal
graphs, and split graphs [4]. Most of the work on this problem has dealt with specific graphs such as
grids and rings, for small reuse distance (o) values, and for small channel separation (4;) values, e.g.,
optimal L(1,1) colourings for rings and bidimensional grids [1], optimal L(2,1) and L(2,1,1) colourings
for hexagonal, bidimensional, and cellular grids [2], etc. Recently, Bertossi et al [3] exhibited optimal
L(41,1,...,1) colourings, for 61 < |o/2], for bidimensional grids and rings. (See [3] for a succinct literature
survey of this problem.) Below, we refer to L(-,1,...,1) colourings by L(-, Tk) colourings.

As pointed out in [2], a lower bound for the L(1,1;) colouring problem is also a lower bound for the
L(4, fk), 6 > 1. Given an instance of CAPS, consider the augmented graph obtained from G by adding
edges between all those pairs of vertices that are at a distance of at most o — 1. Clearly, then, the size
(number of vertices) of any clique in this augmented graph places a lower bound on an L(1, fa_l) colouring
for G; the best such lower bound is given by the size of a maximum clique in the augmented graph.

In each graph, G, for each o, we identify a canonical sub-graph, T'(G, o), of the graph so that the vertices
of T(G, o) induce a clique in the augmented graph of the graph. We will refer to T(G, o) as a tile. When
the context is clear, we will refer to the size of T(G, o) simply as ¢(o).

Most (but not all) of the assignment schemes described in this paper follow the pattern: for a given
graph G, and for a given o, (1) identify T'(G,0), (2) find the number of vertices in T'(G, o), and hence a
lower bound for the given assignment problem, (3) describe a colouring scheme to colour all the vertices of
T(G, o), (4) demonstrate a tiling of the entire graph made up of T'(G, o) to show that the colouring scheme
described colours the entire graph, and (5) show that the colouring scheme satisfies the given reuse distance
and channel separation constraints.

3 Channel Assignments in Higher Dimensional Grids

In this section we relate L(d1,02,...,0,_1) colourings for d-dimensional cellular and square grids.

For any d-dimensional lattice, £, the minimal distance in the lattice is denoted by u(£). The infinite
graph, denoted G(L£), corresponding to the lattice £ consists of the set of lattice points as vertices; each pair
of lattice points that are at a distance u(L) constitute the edges of G(£). Henceforth, we will not make a
distinction between the lattice points in £ and the corresponding vertices in G(£). For any lattice £, for any
two points u and v in £, dg(.)(-,-) will denote the distance between vertices u and v in G(£).

The lattice Z? is the set of ordered d-tuples of integers, and Ay is the hyperplane that is a subset of
Z%*! and is characterised as the set of points in Z?*! such that the coordinates of each point add up
to zero. u(Z?) = 1, and the minimal length vectors in Z“ are the unit vectors in each dimension. For
each d > 0, for each ,5,0 < 4,j < d,i # j, define A}; = (xo,...,24) where z; = 1, z; = —1, and for
each k,0 < k < d,k # i,j,zx = 0. Then, u(Ag) = v/2, and the set of minimal length vectors in Ag is
{A14,5,0<d,j <d,i# j}. (See [5, 9] for more on these lattices.)

The infinite d-dimensional square grid is, then, G(Z¢), and the infinite d-dimensional cellular grid is

G(Aq).

Theorem 1. For alld > 2, if there is a g-L(81, 02, . . ., 65_1) colouring for Z%, then there is a g-L(v1, 72, - - - s Vrg1-1)
colouring for Ag_1 where, for each i,1 <i <[] =1, v; = 6.

Proof. Consider a point x = (xg,...,Zq_1) that is in the intersection of Z¢ and A4_;. Then, dza(z,0) =
2-da,_,(,0), thus giving us the theorem. O

Theorem 2. For alln > 2, if there is a g-L(61,02, - ..,05_1) colouring for Ay, then thereis a g-L(61,02,---,0,_1)
colouring for ZL5



Proof. Consider the subset of minimal length vectors in A4 given by {)\;.i( iy 0<i< |42}, Clearly,

this subset consists of L%J mutually orthogonal vectors, and hence is a basis for ZL5 Thus, the infinite
graph for g(zL%J) is a subgraph of G(A4), and hence the result. O

4 Colourings for G(Z9)

As mentioned in Section (1), we first identify the canonmical sub-graph T(G(Z%),0), and then find lower
bounds on the colourings of G(Z%). We then present optimal colouring schemes for G(Z?), for o = 3, 4, with
a separation constraint of 2 for adjacent vertices. We introduce the notion of a colouring schema for G(Z4),
and also prove that the colouring schemes presented have running times of O(d).

4.1 Lower bound

The lower bound on the colouring of G(Z?) is the number of vertices in T(G(Z%),0), denoted by c(o).
Henceforth, we will refer to this number by n(o,d). Note that n(o,1) = o. It can be proved that:
L%
n(o,d) =n(o,d—1)+2> n(o —2i,d—1).

i=1

4.2 Colouring Strategy

Before we present the actual colouring schemes, we present an intuitive discussion of the strategy that we
will use to colour G(Z?).

We will use the notation (zg,...,;,...,Zq_1) to denote the vertex in G(Z?). The strategy used to colour
G(Z?) is to identify a base-segment on a baseline. The baseline is the set of vertices (zo,0,...,0). The base-
segment is the set of vertices (zo,0,...,0) with 0 < 29 < B(0,d), where B(o,d) is the number of colours

used to colour G(Z?), with a reuse distance of o. Note that B(c,d) < n(o,d), as n(o,d) is the lower bound
on the colouring. This base-segment is translated to fill up G(Z%). A translation of the base-segment into
the it"* dimension is an increase in g, and an increment of 1 in the " dimension. A translation, in other
words is to repeat the colouring at some distance. The increase in xg is given by the translation function ;,
where 1 <i<d-—1.

We thus have a function f that colours vertices on the baseline, and a function C' that colours vertices of
G(Z?). To prove that our colouring schema work, we will make use of a process called dimensional collapse,
which is the inverse of the translation process described above. It is the strategy of reducing the colours
assigned to arbitrary vertices in G(Z<) to colours assigned to vertices on the baseline. We describe the
process here.

Consider two vertices P = (xg,21,...,24-1) and Q = (2'g,2'1,...,2'q_1) in G(Z?), where z'; — x; = k;,
0 <i<d— 1. Let t; be the translation function employed by a colouring scheme C for G(Z?). The colours
assigned to P and @) will be:

d—1 d—1
C(P) = C(wo,xl,...,xd,l) ZC(JZO —in -ti,O,...,O), and C(Q) = C(.CL'IO —Zl‘li -t,~,0,...,0).
=1 =1

This means the colours assigned to P and @ are the same as the colours assigned to vertices u = (xg —
Z?;ll Z; - t,0,...,0) and v = (2’0 — 2?2—11 x'; - t;,0,...,0) on the baseline. We call u and v the collapse
points corresponding to P and ). Their collapse positions are CP(P) and CP(Q) respectively. We define
the collapse distance as the distance between v and v. We denote it by CD(P, Q).

d—1
CD(P7Q) = d(u,v) = |k0 - Zkz 'ti|
i=1

4.3 Optimal colouring for o =3

Consider the star graph Sa which consists of a center vertex ¢ with degree A, and A ray vertices of degree
1. We will use the following Lemma about the colouring of Sa, proved in [2].



Lemma 1. [2] Let the center ¢ of Sa be already coloured. Then, the largest colour required for a g-L(2,1)-
colouring of SA by the colouring function f is at least:

[ A4+1 f(e)=0or flc)=A+1,
9=V A+2 0<fle)<A+1.

O

Consider any induced subgraph in G(Z?), with the distance between the vertices d(u,v) < ¢ — 1. This is
a star graph with a center vertex of degree 2d and 2d ray vertices, each of degree 1. There are instances of
the star graph where 0 < f(¢) < A + 1. Hence we have from Lemma (1):

Lemma 2. If there is a g-L(2,1) colouring of G(Z?), then g > 2d + 2. O

Lemma (2) shows that n(o,d) > 2d + 3. We provide a colouring scheme that uses B(o,d) = 2d + 3
colours. The base-segment is coloured using the function:

Flao) = 2d —2xg+1 o mod (2d + 3) < d, (1)
T0)=\ 4d-2z0+4 d+1<zomod (2d+3) < 2d+ 2.

We define in Equation (2) the colouring scheme C3, and later prove that it optimally colours G(Z%):
Cs(zo,1,...,24,0,...,0) = Cs(xo— (i +1)z4,21,...,24-1,0,...,0),1 <i<d -1,
C3(20,0,...,0) = f(zo)- (2)
We make the following observations about the colours assigned to the baseline:
Lemma 3. For colouring the baseline,
1. The set of 2d + 3 colours used by the function f defined in Equation (1) is {0,1,...,2d + 2}.

2. Vertices are assigned consecutive colours iff they are ((d + 1) mod (2d + 3)) or ((d + 2) mod (2d + 3))
apart.

3. The difference in colours assigned to consecutive vertices is at least two.
4. For distinct vertices u and v on the baseline, d(u,v) # 2d + 3 = f(u) # f(v). O
Here, we prove that the colouring scheme C'5 is optimal:

Theorem 3. The colouring defined by Cs is an optimal L(2,1) colouring of G(Z?).

Proof. From Lemma, (3.1), the colouring scheme C3 uses exactly 2d + 3 colours, with the largest colour being
2d + 2. From Lemma (2), this scheme is optimal if it works. To prove that C3 works, we have to prove that
it satisfies the co-channel reuse and the channel separation constraints.

Adherence to the co-channel reuse constraint: Suppose two distinct vertices P = (2o, Z1,...,Z4—1)
and Q = (Yo,Y1,---,Ya—1) in G(Z?) are assigned the same colour. Then, the co-channel reuse constraint is
satisfied if we prove that d(P, () > 3. Let us assume the contrary, i.e. d(P,Q) < 2.

Case 1: P and @ differ in xo.
When P and @ differ in zg, we write P and @ as follows:

P = (zo,71,---,Ta,---,Td—1), and Q = (z'0,1,...,2'a,-..,T4_1),

where 1 <a<d—1, 2'g —x0 = ko, and 2’y — x4 = ko, 1 < |ko| + |ka| < 2, |ko| > 0.

Performing the dimensional collapse on P and @, we get:

CP(P) = (wo—dxq-1—-—(a+1Dze—---—221,0,...,0),
CP(Q) = (¢o—drg1—--—(a+1)2'q—---—22,0,...,0)
C-D(P7Q) = |k0 - (a+1)ka|

Since the maximum value of a is d — 1, we have: 0 < |ko — (a + 1)k,| < d+ 1. This means that
there are two vertices v and v on the baseline such that Cs3(u) = C3(P) and Cs3(v) = C5(Q), and
0 < d(u,v) < d+ 1. From Lemma (3.4), C3(u) # Cs(v). Therefore, C3(P) # C3(Q), giving us a

contradiction.
4



Case 2: P and Q) do not differ in xq.
In this case, we write P and @Q as follows:

P = (xo,%1,---,Ta,---,Th,---,Tqg_1), and Q = (0, T1,---, T a,---,2'p,...,Tq_1), Where
1<a<d—1land1<b<d-—1, (3)
2y — g =ke and z'y — zp = Ky, 1 < |ko| + |Kp| < 2. (4)

Performing the dimensional collapse on P and @, we get:
CD(P,Q) =|—(a+ 1)k, — (b+ 1)kp|. (5)

From Equations (3) and (4), and from the fact that a # b, we have: 0 < CD(P,Q) < 2d. Therefore
we have 0 < d(u,v) < 2d. From Lemma (3.4), C5(u) # C3(v). Therefore, C3(P) # C3(Q), giving us a
contradiction.

The above two cases thus prove that d(P,Q) > 3, thereby satisfying the co-channel reuse constraint.

Adherence to the channel separation constraint: To prove the channel separation constraint, we use
Lemma (3.2). As before, it suffices to verify the following two cases:

Case 1: P and Q differ in xo.
This is a special case of Case 1 of the previous argument with |kyg| = 1 and k, = 0. Performing the
dimensional collapse on P and @ as before, we get CD = 1. From Lemma (3.2), u and v, and hence
P and @) cannot have consecutive colours.

Case 2: P and Q do not differ in xq.

This is also a special case of Case 2 of the previous argument, with |k,| = 1 and k, = 0. From
Equations (3) and (5), we have 0 < CD < d, i.e. 0 < d(u,v) < d. From Lemma (3.2), v and v, and
hence P and () cannot have consecutive colours. O

4.4 Optimal colouring for o =4

The lower bound for L(2,1,1) colouring is n(4,d) = 4d. Hence, B(4,d) > 4d. We use the following Lemma,
proved in [2], about the span of an L(d1,1,...,1) colouring. For the graph G(V, E), [2] also defines A\(G) as
the largest colour used in an optimal colouring scheme.

Lemma 4. [2] Consider the L(d1,1,...,1)-colouring problem, with 61 > 2, on a graph G = (V, E) such that
d(u,v) < o for every pair of vertices u and v in V. Then A(G) = |V|—1 if and only if G has a Hamiltonian

path. O
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Figure 1: A plane in G(Z?), (a) Induced subgraph M in G(Z?), and (b) Dummy edges in M

In [2], Lemma (4) is used to prove the existence of a hole in L(2,1,1) colouring of G(Z?). Lemma (5)
extends the proof to G(Z?).



Lemma 5. If there is a g-L(2,1,1) colouring of G(Z?), then g > 4d.

Proof. Consider a plane in G(Z?) characterised by (xg, 1, ko, ks, ..., kq_1), where the first two coordinates
can vary and k;’s are fixed constants. Such a plane is shown in Figure 1. For any vertex z in this plane,
zi and z} denote vertices above the plane of the paper and z% and z} denote vertices below the plane of
the paper. The subscripts 1 and 0 denote distances of 1 and 2 above the plane of the paper respectively.
Similarly, the subscripts 2 and 3 denote distances of 1 and 2 below the plane of the paper respectively. The
superscript 4 denotes the dimension of the vertex, where (3 <4 < d). Consider the set of vertices which make
up the induced subgraph T'(G(Z?), o) denoted by M for notational convenience (illustrated in Figure 1a for
three dimensions) in G(Z¢) with distance between any two vertices less than the reuse distance 4:

— i 44 % % T i 48 ot ol
Suv —{uatawavapazasayatla 27w17w2}7and Spb_{patasabnuaaawaya 13t2531a$2}

The points {a,b, st,si} are adjacent to s. Consider the set of vertices in S;b. Once Sy, has been assigned
to all different colours, the vertices {a, b, s¢, s4} of S;,b must be assigned the colours assigned to the vertices
{z,v,wi,wi} if only 4d colours {0,1,...,4d — 1} are to be used. Due to the channel separation constraint,
colours assigned to {a,b,si, st} must be at least two apart from the colour assigned to vertex s. This is
equivalent to adding dummy edges connecting s to {z,v,w!,w}} in M induced by S,. Figure 1b shows
these dummy edges in M in G(Z3). Repeating this argument for vertices y, z and p we get the dummy edges
connecting y to {p,u,tt i}, z to {u, s, ti,ti} and p to {y,v, w?, wi} in S,,. These edges are not shown in
the Figure 1b to avoid cluttering.

Now consider the sets Sy, and Sp.. Four vertices p,t, w and z are common between them and their colours
are fixed. The remaining vertices {h, g, f,e,pt,pb, zi, 25} of Sp. should be assigned the colours assigned to
{u,s,y,v,ti, t wi wi} in Sy,. We are interested in the vertices u and v in Sy,. We want to prove that a
colouring of G(Z?) satisfying all constraints implies a dummy edge uv in S,,,. For this, we will fix the colour
of v (denoted by C(v)) in Sp. and consider all vertices where colour of u (denoted by C(u)) can reoccur
and prove that we can always find a set S,/ in which colours of 4 and v are assigned to adjacent vertices.
Note that due to the co-channel reuse constraint, C'(v) can reoccur at h,g,pt or p} in Sy, and for each of
these positions of v, C'(u) can reoccur at f,e, zi or 2 in Sp.. Note that for any recurrence of C(v), if C(u)
reoccurs at e then C(u) and C(v) are assigned to adjacent vertices e and v respectively. This implies a
dummy edge between u and v in S,,. Consider the following cases for each recurrence of C(v) when C(u)
does not reoccur at e.

Case 1: C(v) reoccurs at h in Spe.
Here, C'(u) and C(v) are assigned to adjacent vertices u and h respectively. This implies a dummy
edge between v and v in Sy,.

11 % %
"""" ' =F====
;2 ' ;2: a. ' .822: a.z d
o+ %1 u) ) 3
' ob2 32 e e (s)e: e
' ' : 24
P o Loip | R bt
L2 2 : ! 2 2|
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2 . 42 E V2 E 2
do : d1 : d  dy : ds
¢ .. ° R ° °
(v)

Figure 2: New nomenclature for vertices in Figure 1, and M in G(Z?).

Case 2: C(v) reoccurs at g,pi or pb in She.
To treat this case conveniently, we introduce a new nomenclature for the vertices in the plane. Figure 2
shows the new nomenclature where the vertices a,d,a3 and d3 correspond to vertices h,e,u and v
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respectively. As before, the superscripts denote the dimensions, with ¢ = 2 for vertices in the plane.
This case can be broken down into the following two cases.

Case 2a: C(v) reoccurs at bi and C(u) reoccurs at ct.
Without loss of generality, consider the case when i = 2. Here, C'(u) and C(v) are assigned to
adjacent vertices b7 and ¢? respectively. This implies a dummy edge between 4 and v in S,

Case 2b: C(v) reoccurs at bi and C(u) reoccurs at ¢, where i # j and 2 < i,j < d.
Without loss of generality, let C'(v) reoccur at b2. Consider the set Saz242. In this set, let =z
for convenience. Due to co-channel reuse constraint, C(u) at ¢} can reoccur in Sa242 at one of
b2,a2,xi or z all of which are adjacent to b? coloured with C'(v).

The above two cases show that no matter where C(u) and C(v) reoccur in Sy, we can always find a set Sy,
in which C(u) and C(v) are assigned to adjacent vertices. Hence we have a dummy edge connecting u and
v in Sy, as shown in Figure 1b.

Finally, let us build M, the complement of M. Figure 2 shows M in G(Z®) and Figure 1a shows M in
G(Z3). Since M consists of two connected components, M cannot contain a Hamiltonian path. Hence by

Lemma (4), there is no g-L(2,1,1) colouring for G(Z¢) with g = 4d — 1. O
We shall use the previous strategy of colouring the base-segment and translating it to fill up G(Z4).
Here, for the i*" dimension, #; = 4i — 1 and The base-segment is the set of vertices (zo,0,...,0) with

0 < z¢g < 4d — 1. The base-segment is coloured using the function:

zo div 4 ro mod 4 =0,
] dt@oave  zomeds=2
f(wo) = 2d+ 1+ (zo div4) xo mod 4 = 3, o

3d+ 1+ (xg div4) z9 mod4=1.
We now define the colouring scheme Cy, and later prove that it optimally colours G(Z4):

Ca(xo,21,...,24,0,...,0) = Cu(xo— (4 —1)z5,21,...,2-1,0,...,0),1<i<d-1
C4(x0,0,...,0) = f(xo mod 4d). (7
We make the following observations about the colouring of the baseline:
Lemma 6. For colouring the baseline,
1. The set of 4d colours used by the function f defined in Equation (6) is {0,1,...,2d—1,2d+1,...,4d}.
2. The difference in colours assigned to consecutive vertices (vertices differing in xo by 1) is at least two.
3. For distinct vertices u and v in the same base-segment, f(u) # f(v). O
Lemma 7. On the baseline, the following is true about vertices that are assigned consecutive colours:
1. If they are assigned the colours 2d + 3 and 2d + 4, then they are 2 apart.
2. If they are not assigned the colours 2d + 3 and 2d + 4, then they are 4k apart, where k # 0,k € I. [
Here, we prove that the colouring scheme C is optimal.
Theorem 4. The colouring defined by Cy is an optimal L(2,1,1) colouring of G(Z%).

Proof. From Lemma (6.1), the colouring scheme Cj uses exactly 4d colours, with the largest colour being
4d. From Lemma (5), this scheme is optimal if it satisfies the co-channel reuse and the channel separation
constraints.

Adherence to the co-channel reuse constraint: Suppose two distinct vertices P = (2o, 21,...,Zd—1)
and Q = (yo,¥1,---,¥a—1) in G(Z%) have the same colour assigned to them. Then, the co-channel reuse
constraint is satisfied if we prove that d(P, Q) > 4. Let us assume the contrary, i.e. d(P,Q) < 3.



Case 1: P and @ differ in xq.
When P and @ differ in zg, we write P and @ as follows:

P = (20,T1,--,Tqy- s Tty---,T4_1), and Q = (2’0, Z1,.. ., T 0y, T'py .., Tg_1),
where1<a<d-1, 1<b<d-1, z'og—z9=ko, 2y — e =k, z's —zp = ky,
1< |k‘0| + |ka| + |k'1,| <3, |k0| > 0. (8)

A dimensional collapse on P and @) will in this case give

CD(P,Q) = |ko—(4a—1)k,—(4b—1)kp| = |—4s+t|, where s,t € I, s = (ako+bky), t= (ko+ko+ks).
(9)

In Equation (9), if ¢ # 0, then by Equation (8), CD(P,Q) > 0. Also, since ¢t # 0, CD is not a multiple

of 4. By Lemma (6.1), Cy(u) # Cy(v) and hence Cy(P) # C4(Q), giving us a contradiction.

If ¢ = 0, we have ko + k, + k» = 0, which is only possible when {|ko|, |k.|, |ks|} = {1,0,1} or {1,1,0}.

Therefore, CD = d(u,v) = 4a or 4b. Since the maximum values that a and b can take are (d — 1), by

Lemma (6.1), Cy(u) # Cy(v) and Cy4(P) # C4(Q), giving us a contradiction.

Case 2: P and @) do not differ in xq.
In this case, we write P and @) as follows:

! ! !
P=(Zoy-..,ZTayeneyTbyevsTeyevyTd—1), and Q@ = (To,.. ;T gy oy Zpyee Ty, Tag—1),
where 1 < a,b,c<d—1, z'y—zo=ke, z'p—xp=ks, . —x. =k,
1< Jral + o] + el < 3.

Performing the dimensional collapse on P and () as before, we get:

CD(P,Q) =|—(4a—1)ky — (4b— D)kp — (dc — k| = | —4s+t|, s,tel,
s = ak, + bky + cke, t =k + kp + ke- (10)

If t # 0, then by the argument used in the previous case, Cy(P) # C4(Q)—a contradiction.

Ift =0, ko + kp + k. = 0, which is possible only when {k,, ky, k.} = {0,1, -1}, or {0, —1,1} or{1,0,-1}
or {—1,0,1}or {0,1,—1} or {0,—1,1}. Without loss of generality, we can say: d(u,v) = 4|s| = 4(a—b).
Since a — b is not a multiple of 4d, d(u,v) is not a multiple of 4d, and by the previous argument,
C4(P) # C4(Q)—a contradiction.

The above two cases thus prove that d(P, Q) > 4, thereby verifying the co-channel reuse constraint.

Adherence to the channel separation constraint: As before, it suffices to verify the following two
cases:

Case 1: P and Q differ in xq.
This is a special case of Case 1 of the previous argument with |ko| = 1,k, = ky = 0. This means
that there are two vertices u and v on the baseline such that Cy(u) = C4(P) and Cs(v) = Ca(Q), and
d(u,v) = 1. From Lemma (7), u and v, and hence P and @ cannot have consecutive colours.

Case 2: P and Q do not differ in xg.
This is also a special case of Case 2 of the previous argument, with |k,| =1 and ky = k. = 0. We have
d(u,v) = 4a— 1. From Lemma (7), u and v, and hence P and @ cannot have consecutive colours. O

4.5 Colouring Schema for Z¢

In this section we present a generalized scheme for L(8;,1,_2) colourings of G(Z4) for all d and odd values of
0. Towards this, we first introduce the notion of a colouring schema for Z%. We then show the existence of
such schema. Then we present an algorithm that uses such a colouring schema, for Z?, for colouring G(Z),
and prove that the resulting colouring is an L(dy,1;) colouring of G(Z%), where k, 1, and the span of the
colouring are given by the colouring schema.

Definition 1. For d > 1, suppose 0 > 1, N > n(o,d) are odd integers, and T = (t1,t2,...,t4_1) is a non-
decreasing sequence of (d — 1) positive, odd integers. Then (o,T,N) is a colouring schema for Z¢, denoted

Sd ) Zﬁ.



1. for eachi,1<i<d, o0 <t; <N, and
2. for all X = (%o,...,24-1) € Z%, X #0,

d—1 d—1
Z|xi|<a———> ($0+in-ti> mod N # 0.

=0 i=1

Exhaustive verification proves the following proposition that asserts the existence of a colouring schema
for Z3.

Proposition 1. The triple given by 0 = 5, T = (5,19), and N = 27 is a colouring schema for Z°. O

We define in Equation (11) the coloring scheme Cy, based on a colouring schema for Z¢, Sy = (0,7 =
(t1,...,tq—1), N). For each d, define a function g4(z, N) as:

if x is even;

_[5
ga(z, N) = { z+N  stherwise.

2

Ci(0,0,...,0) = ga((zo mod N),N).
Cy(zo,21,...,24,0,...,0) = C4(xg — z; - ti,21,...,2i—1,0,...,0). (11)

In the following lemma we observe some useful properties of the colouring of G(Z?) defined by Equa-
tion (11). We use these properties in Theorem 5 below.

Lemma 8. Suppose Cy is used to colour Z¢ based on a colouring schema Sq = (0,T = (t1,...,t4_1), N).
Then,

1. The colours used by Cq are ezactly the set {0,...,N —1}.
2. Cy(z,0,...,0) = Cy(y,0,...,0) < |z —y| mod N =0.

3. Suppose P = (po,p1,---,pi—1) and Q = (qgo,q1,--.,qa—1) are vertices in G(Z?%) such that for eachi,1 <
i <d, pi = qi. Then, |Cq(P)—C4(Q)| = |Ca((po—s) mod N,0,...,0)— C4((go — s) mod N,0,...,0)],
where s = Z‘::_ll pi - ti.

4. Suppose P = (po,pi,---,pa—1) and Q = (qo,q1,---,q4—1) are vertices in G(Z?) such that py # qx, for
some 1 < k <d, and for each i,0 < i(# k) <d, p; = q;.- Then,

|Cd(P) - Cd(Q)| = |Cd(@0 - SIJ) mod N707' 70) - Cd((qo - sq) mod N707" '70)|7
where s, = E?;ll(#) Di-ti +pr - tr, and sq = 2?2_11(#) Di - ti + qi - .

5. For eachi,j,0<i<j <N, if(j—1) is odd then |Cq(i,0,...,0) — C4(4,0,...,0)| > N_(Qj_i).

Proof. Parts 1, 2, 3, and 4 are immediate from the definition of Cy in Equation (11). Suppose j =i+ 2k +1
such that 0 <i < j < N. (In the rest of this proof, for convenience, and without loss of generality, we will
use Cy(z) for C4(z,0,...,0).) Part 5 can be proved by considering the two cases: i even and 4 odd, and
using the definition of the function g4 to get the difference in the colour assignment of ¢ and j. O

Theorem 5. For d > 1, given a colouring schema Sy = (0, T = (t1,...,t4-1),N), Cyq is an L((Sl,fa_z)
N—tq_1

colouring of Z* where §; = —==—. The span of this colouring is N.
Proof. We need to verify that Cy satisfies the channel separation constraint and the co-channel reuse con-
straint.

Consider any two neighbouring vertices, P = (po,...,pa—1) and Q = (qo,-..,q4—1), in G(Z?). Clearly,
then, either py and qq differ by one, or for some i,1 < i < d, p; and ¢; differ in one. In the former case, using
parts 3 and 5 of Lemma 8, we have that the separation between the colours assigned to these two points is
at least # In the latter case, using parts 4 and 5 of Lemma 8, and since t4_; is the largest value in T,
we have that the separation between the colours assigned to these two points is at least %

Since Sy is a colouring schema for Z?, it satisfies property 2 in Definition 1. This property of S; along
with Part 2 of Lemma 8 ensures that if two vertices are assigned the same colour then the distance between
them is at least NV, the reuse distance. O

Now the following is an immediate consequence of Proposition 1 and Theorem 5.

9



Corollary 1. The colouring schema for Z? given in Proposition 1 above witnesses an L(4,1,1,1) colouring
of G(Z3). The span of the colouring is N = 27. O

We end this section with the following observation about the efficiency of the above assignment algorithms.

Lemma 9. The running times of the above algorithms for colouring G(Z¢) are O(d).

Proof. Consider the general colouring scheme C that uses the translation function ¢; to colour a vertex
P = (zg,x1,...,24—1). The colour assigned to P is given by: C(P) = C(xo — Z‘:;ll Z; - t;,0,...,0). Clearly,
the assignment time is O(d). O

5 Conclusions and Open Problems

We investigated colorings in higher dimensional square grids and presented optimal L(2,1) and L(2,1,1)
colourings for square grids in all dimensions d > 1. Treated as lattices, certain lower dimensional cellular
grids are subsets of d-dimensional square grids, and certain lower dimensional square grids are subsets of d-
dimensional cellular grids. We use this property to establish the existence of channel assignment algorithms
for each kind of grid (square/cellular) based on algorithms for the other kind of grid (cellular/square). We
also introduce the notion of a colouring schema, for the d-dimensional square grid, and an algorithm that,
given the colouring schema, assigns colours to the grid satisfying the schema constraints.

Several interesting open questions arise from the work presented here. We list a few of them here: (1) Find
optimal, or near-optimal, colourings for higher dimensional cellular grids. (2) Find optimal, or near-optimal,
colourings for d-dimensional square grids for reuse distances larger than 4. (3) Find colouring schema Z? for
various values of reuse distance and dimension.
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