5 Communicators and Topologies

The use of communicators and topologies makes MPI different from most
other message-passing systems. Recollect that, loosely speaking, a commu-
nicator is a collection of processes that can send messages to each other. A
topology is a structure imposed on the processes in a communicator that
allows the processes to be addressed in different ways. In order to illus-
trate these ideas, we will develop code to implement Fox’s algorithm [1] for
multiplying two square matrices.

5.1 Fox’s Algorithm

We assume that the factor matrices A = (a;;) and B = (b;;) have order n.
We also assume that the number of processes, p, is a perfect square, whose
square root evenly divides n. Say p = ¢, and n = n/q. In Fox’s algorithm the
factor matrices are partitioned among the processes in a block checkerboard
fashion. So we view our processes as a virtual two-dimensional ¢ x ¢ grid, and
each process is assigned an n x 7 submatrix of each of the factor matrices.
More formally, we have a mapping

¢:{0,1,....p—1} — {(s,1) : 0< 5,t < qg—1}

that is both one-to-one and onto. This defines our grid of processes: process
i belongs to the row and column given by ¢(7). Further, the process with
rank ¢ !(s,t) is assigned the submatrices

Qsxq,txn T Q(s41)%7—1,tx7
Ast = : :)
Assqy(t+1)xn—1 " O(s+1)sa—1,(t+1)*a—1
and
bs*ﬁ,t*ﬁ T b(s+1)*ﬁ—1,t*ﬁ
By = : :
bs*n,(t+1)*n—1 T b(s+1)*ﬁ71,(t+1)*n—1

29

For example, if p = 9,¢(z) = (2/3,2 mod 3), and n = 6, then A would be

partitioned as follows.

Process 0 Process 1 Process 2
a aop1t Qoo @ Qoa @
Agy = 00 Qo Ay = 03 Agy = 0 05
Q10 a1 Q12 Qi3 a14 Qis
Process 3 Process 4 Process 5
Q20 0A21 a2 A2 A24 A2 -
Ay = 0 A = s Ay = >
a3o asi agz2 433 34 ags
Process 6 Process 7 Process 8
Q40 Qaq1 Qg2 Q43 Qg4 Qg5
Agp = Ay = Aoy =
as0 As1 as2 453 G54 Qs

In Fox’s algorithm, the block submatrices, A,; and By, s
r,t). The basic algorithm is:

are multiplied and accumulated on process ¢

for(step = 0;
1.
2.

step < q; stept+) {
Choose a submatrix of A from each row of processes.
In each row of processes broadcast the submatrix

=0,1,...

>q_]-a

chosen in that row to the other processes in
that row.

3. 0On each process, multiply the newly received
submatrix of A by the submatrix of B currently
residing on the process.

4. 0On each process, send the submatrix of B to the
process directly above. (On processes in the
first row, send the submatrix to the last row.)

}

The submatrix chosen in the rth row is 4, ,, where

u = (r + step) mod q.

5.2 Communicators

If we try to implement Fox’s algorithm, it becomes apparent that our work
will be greatly facilitated if we can treat certain subsets of processes as a
communication universe — at least on a temporary basis. For example, in
the pseudo-code

30

2. 1In each row of processes broadcast the submatrix
chosen in that row to the other processes in
that row,

it would be useful to treat each row of processes as a communication universe,
while in the statement

4. 0On each process, send the submatrix of B to the
process directly above. (On processes in the
first row, send the submatrix to the last row.)

it would be useful to treat each column of processes as a communication
universe.

The mechanism that MPI provides for treating a subset of processes as
a “communication” universe is the communicator. Up to now, we’ve been
loosely defining a communicator as a collection of processes that can send
messages to each other. However, now that we want to construct our own
communicators, we will need a more careful discussion.

In MPI, there are two types of communicators: intra-communicators
and inter-communicators. Intra-communicators are essentially a collection
of processes that can send messages to each other and engage in collective
communication operations. For example, MPI_COMM_WORLD is an intra-
communicator, and we would like for each row and each column of processes
in Fox’s algorithm to form an intra-communicator. Inter-communicators, as
the name implies, are used for sending messages between processes belonging
to disjoint intra-communicators. For example, an inter-communicator would
be useful in an environment that allowed one to dynamically create processes:
a newly created set of processes that formed an intra-communicator could
be linked to the original set of processes (e.g., MPI.COMM_WORLD) by an
inter-communicator. We will only discuss intra-communicators. The inter-
ested reader is referred to [4] for details on the use of inter-communicators.

A minimal (intra-)communicator is composed of

e a Group, and
e a Context.

A group is an ordered collection of processes. If a group consists of p pro-
cesses, each process in the group is assigned a unique rank, which is just a

31

nonnegative integer in the range 0,1,...,p — 1. A context can be thought of
as a system-defined tag that is attached to a group. So two processes that
belong to the same group and that use the same context can communicate.
This pairing of a group with a context is the most basic form of a commu-
nicator. Other data can be associated to a communicator. In particular,
a structure or topology can be imposed on the processes in a communica-
tor, allowing a more natural addressing scheme. We’ll discuss topologies in
section 5.5.

5.3 Working with Groups, Contexts, and Communica-
tors

To illustrate the basics of working with communicators, let’s create a com-
municator whose underlying group consists of the processes in the first row of
our virtual grid. Suppose that MPI_COMM _WORLD consists of p processes,
where ¢ = p. Let’s also suppose that ¢(z) = (z/¢, z mod q). So the first row
of processes consists of the processes with ranks 0, 1, ..., ¢ — 1. (Here, the
ranks are in MPI_.COMM_WORLD.) In order to create the group of our new
communicator, we can execute the following code.

MPI_Group MPI_GROUP_WORLD;
MPI_Group first_row_group;
MPI_Comm first_row_comm;
int row_size;

int* process_ranks;

/* Make a list of the processes in the new

* communicator */

process_ranks = (int*) malloc(qg*sizeof (int));

for (proc = 0; proc < q; proc++)
process_ranks [proc] = proc;

/* Get the group underlying MPI_COMM_WORLD */
MPI_Comm_group (MPI_COMM_WORLD, &MPI_GROUP_WORLD);

/* Create the new group */
MPI_Group_incl(MPI_GROUP_WORLD, q, process_ranks,

32

&first_row_group) ;

/* Create the new communicator */
MPI_Comm_create (MPI_COMM_WORLD, first_row_group,
&first_row_comm) ;

This code proceeds in a fairly straightforward fashion to build the new
communicator. First it creates a list of the processes to be assigned to
the new communicator. Then it creates a group consisting of these pro-
cesses. This required two commands: first get the group associated with
MPI_COMM_WORLD, since this is the group from which the processes in the
new group will be taken; then create the group with MPI_Group_incl. Fi-
nally, the actual communicator is created with a call to MPI_Comm _create.
The call to MPI_Comm_create implicitly associates a context with the new
group. The result is the communicator first_row_comm. Now the processes in
first_row_comm can perform collective communication operations. For exam-
ple, process 0 (in first_row_group) can broadcast Agyg to the other processes in
first_row_group.

int my_rank_in_first_row;
float* A_00;

/* my_rank is process rank in MPI_GROUP_WORLD */
if (my_rank < q) {
MPI_Comm_rank(first_row_comm,
&my_rank_in_first_row);
/* Allocate space for A_00, order = n_bar */
A_00 = (float*) malloc (n_bar*n_barx*sizeof(float));
if (my_rank_in_first_row == 0) {
/* Initialize A_00 */

}.
MPI_Bcast(A_00, n_bar*n_bar, MPI_FLOAT, O,
first_row_comm) ;

3

Groups and communicators are opaque objects. From a practical stand-
point, this means that the details of their internal representation depend on

33

the particular implementation of MPI, and, as a consequence, they cannot
be directly accessed by the user. Rather the user accesses a handle that
references the opaque object, and the opaque objects are manipulated by
special MPI functions, for example, MPI_Comm _create, MP|_Group_incl, and
MPI_Comm_group.

Contexts are not explicitly used in any MPI functions. Rather they are
implicitly associated with groups when communicators are created.

The syntax of the commands we used to create first_row_comm is fairly
self-explanatory. The first command

int MPI_Comm_group(MPI_Comm comm, MPI_Group* group)

simply returns the group underlying the communicator comm.
The second command

int MPI_Group_incl(MPI_Group old_group, int new_group_size,
int* ranks_in_old_group, MPI_Group* new_group)

creates a new group from a list of processes in the existing group old_group.
The number of processes in the new group is new_group_size, and the pro-
cesses to be included are listed in ranks_in_old_group. Process 0 in new_group
has rank ranks_in_old_group[0] in old_group, process 1 in new_group has rank
ranks_in_old_group[1] in old_group, etc.

The final command

int MPI_Comm_create(MPI_Comm old_comm, MPI_Group new_group,
MPI_Comm* new_comm)

associates a context with the group new_group and creates the communicator
new_comm. All of the processes in new_group belong to the group underlying
old_comm.

There is an extremely important distinction between the first two func-
tions and the third. MPI_Comm _group and MPI_Group_incl, are both local
operations. That is, there is no communication among processes involved in
their execution. However, MPl_Comm _create s a collective operation. Allthe
processes in old_comm must call MPI_Comm create with the same arguments.
The Standard [4] gives three reasons for this:

1. It allows the implementation to layer MPl_Comm _create on top of reg-
ular collective communications.

34

2. It provides additional safety.

3. It permits implementations to avoid communication related to context
creation.

Note that since MPl_Comm_create is collective, it will behave, in terms of the
data transmitted, as if it synchronizes. In particular, if several communica-
tors are being created, they must be created in the same order on all the
processes.

5.4 MPI_Comm_split

In our matrix multiplication program we need to create multiple communi-
cators — one for each row of processes and one for each column. This would
be an extremely tedious process if p were large and we had to create each
communicator using the three functions discussed in the previous section.
Fortunately, MPI provides a function, MPI_Comm_split that can create sev-
eral communicators simultaneously. As an example of its use, we’ll create
one communicator for each row of processes.

MPI_Comm my_row_comm;
int my_row;

/* my_rank is rank in MPI_COMM_WORLD.

x qxq = p */

my_row = my_rank/q;

MPI_Comm_split (MPI_COMM_WORLD, my_row, my_rank,
&my_row_comm) ;

The single call to MPI_Comm_split creates ¢ new communicators, all of them
having the same name, my_row_comm. For example, if p = 9, the group
underlying my_row_comm will consist of the processes 0, 1, and 2 on processes
0, 1, and 2. On processes 3, 4, and 5, the group underlying my_row_comm
will consist of the processes 3, 4, and 5, and on processes 6, 7, and 8 it will
consist of processes 6, 7, and 8.

The syntax of MPI_Comm_split is

int MPI_Comm_split(MPI_Comm old_comm, int split_key,
int rank_key, MPI_Comm* new_comm)

35

It creates a new communicator for each value of split_key. Processes with
the same value of split_key form a new group. The rank in the new group
is determined by the value of rank_key. If process A and process B call
MPI1_Comm_split with the same value of split_key, and the rank_key argument
passed by process A is less than that passed by process B, then the rank of
A in the group underlying new_comm will be less than the rank of process
B. If they call the function with the same value of rank_key, the system will
arbitrarily assign one of the processes a lower rank.

MPI_Comm_split is a collective call, and it must be called by all the pro-
cesses in old_comm. The function can be used even if the user doesn’t wish
to assign every process to a new communicator. This can be accomplished
by passing the predefined constant MPI_UNDEFINED as the split_key argu-
ment. Processes doing this will have the predefined value MPI_COMM_NULL

returned in new_comm.

5.5 Topologies

Recollect that it is possible to associate additional information — information
beyond the group and context — with a communicator. This additional
information is said to be cached with the communicator, and one of the most
important pieces of information that can be cached with a communicator is
a topology. In MPI, a topology is just a mechanism for associating different
addressing schemes with the processes belonging to a group. Note that MPI
topologies are wvirtual topologies — there may be no simple relation between
the process structure defined by a virtual topology, and the actual underlying
physical structure of the parallel machine.

There are essentially two types of virtual topologies that can be created
in MPI — a cartesian or grid topology and a graph topology. Conceptually,
the former is subsumed by the latter. However, because of the importance of
grids in applications, there is a separate collection of functions in MPI whose
purpose is the manipulation of virtual grids.

In Fox’s algorithm we wish to identify the processes in MPI_COMM _WORLD
with the coordinates of a square grid, and each row and each column of the
grid needs to form its own communicator. Let’s look at one method for
building this structure.

We begin by associating a square grid structure with MPI_.COMM _WORLD.
In order to do this we need to specify the following information.

36

. The number of dimensions in the grid. We have 2.

. The size of each dimension. In our case, this is just the number of rows
and the number of columns. We have ¢ rows and ¢ columns.

. The periodicity of each dimension. In our case, this information spec-
ifies whether the first entry in each row or column is “adjacent” to
the last entry in that row or column, respectively. Since we want a
“circular” shift of the submatrices in each column, we want the second
dimension to be periodic. It’s unimportant whether the first dimension
is periodic.

. Finally, MPI gives the user the option of allowing the system to opti-
mize the mapping of the grid of processes to the underlying physical
processors by possibly reordering the processes in the group underlying
the communicator. Since we don’t need to preserve the ordering of
the processes in MPI_COMM_WORLD, we should allow the system to
reorder.

Having made all these decisions, we simply execute the following code.

MPI_Comm grid_comm;
int dimensions[2];
int wrap_around[2];
int reorder = 1;

dimensions[0] = dimensions[1] = q;

wrap_around[0] = wrap_around[1] = 1;

MPI_Cart_create (MPI_COMM_WORLD, 2, dimensions,
wrap_around, reorder, &grid_comm);

After executing this code, the communicator grid_comm will contain all the
processes in MPI_COMM _WORLD (possibly reordered), and it will have a two-
dimensional cartesian coordinate system associated. In order for a process
to determine its coordinates, it simply calls the function MPI_Cart_coords:

int coordinates[2];
int my_grid_rank;

37

MPI_Comm_rank(grid_comm, &my_grid_rank);
MPI_Cart_coords(grid_comm, my_grid_rank, 2,
coordinates) ;

Notice that we needed to call MPl_Comm_rank in order to get the process rank
in grid_comm. This was necessary because in our call to MPI_Cart_create we
set the reorder flag to 1, and hence the original process ranking in MPI_-
COMM_WORLD may have been changed in grid_comm.

The “inverse” to MPI_Cart_coords is MPI_Cart_rank.

int MPI_Cart_rank(grid_comm, coordinates,
&grid_rank)

Given the coordinates of a process, MPI_Cart_rank returns the rank of the
process in its third parameter process_rank.
The syntax of MPI_Cart_create is

int MPI_Cart_create(MPI_Comm old_comm,
int number_of_dims, int* dim_sizes, int* periods,
int reorder, MPI_Comm* cart_comm)

MPI_Cart_create creates a new communicator, cart_.comm by caching a carte-
sian topology with old_comm. Information on the structure of the cartesian
topology is contained in the parameters number_of_dims, dim_sizes, and peri-
ods. The first of these, number_of_dims, contains the number of dimensions
in the cartesian coordinate system. The next two, dim_sizes and periods,
are arrays with order equal to number_of_dims. The array dim_sizes specifies
the order of each dimension, and periods specifies whether each dimension is
circular or linear.

The processes in cart_comm are ranked in row-major order. That is, the
first row consists of processes 0, 1, .. ., dim_sizes[0] —1, the second row consists
of processes dim sizes[0], dim sizes[0] + 1, ..., 2*dim sizes[0] — 1, etc. Thus
it may be advantageous to change the relative ranking of the processes in
old_comm. For example, suppose the physical topology is a 3 x 3 grid, and
the processes (numbers) in old_comm are assigned to the processors (grid
squares) as follows.

31415
01112
6178

38

Clearly, the performance of Fox’s algorithm would be improved if we re-
numbered the processes. However, since the user doesn’t know what the
exact mapping of processes to processors is, we must let the system do it by
setting the reorder parameter to 1.

Since MPI_Cart_create constructs a new communicator, it is a collective
operation.

The syntax of the address information functions is

int MPI_Cart_rank(MPI_Comm comm, int* coordinates,
int* rank);

int MPI_Cart_coords(MPI_Comm comm, int rank,
int number_of_dims, int* coordinates)

MPI_Cart_rank returns the rank in the cartesian communicator comm of the
process with cartesian coordinates coordinates. So coordinates is an array with
order equal to the number of dimensions in the cartesian topology associated
with comm. MPI_Cart_coords is the inverse to MPI_Cart_rank: it returns the
coordinates of the process with rank rank in the cartesian communicator
comm. Note that both of these functions are local.

5.6 MPI Cart_sub

We can also partition a grid into grids of lower dimension. For example, we
can create a communicator for each row of the grid as follows.

int varying_coords[2];
MPI_Comm row_comm;

varying_coords[0] = 0; varying_coords[1] = 1;
MPI_Cart_sub(grid_comm, varying_coords, &row_comm) ;

The call to MPI_Cart_sub creates ¢ new communicators. The varying_coords
argument is an array of boolean. It specifies whether each dimension “be-
longs” to the new communicator. Since we’re creating communicators for the
rows of the grid, each new communicator consists of the processes obtained
by fixing the row coordinate and letting the column coordinate vary. Hence
we assigned varying_coords[0] the value 0 — the first coordinate doesn’t vary
— and we assigned varying_coords[1] the value 1 — the second coordinate

39

varies. On each process, the new communicator is returned in row_comm. In
order to create the communicators for the columns, we simply reverse the
assignments to the entries in varying_coords.

MPI_Comm col_comm;

varying_coords[0] = 1; varying_coords[1] = 0;
MPI_Cart_sub(grid_comm, varying_coord, col_comm);

Note the similarity of MPI_Cart_sub to MPl_Comm_split. They perform
similar functions — they both partition a communicator into a collection of
new communicators. However, MPI_Cart_sub can only be used with a com-
municator that has an associated cartesian topology, and the new communi-
cators can only be created by fixing (or varying) one or more dimensions of
the old communicators. Also note that MPI_Cart_sub is, like MPI_Comm_split,
a collective operation.

5.7 Implementation of Fox’s Algorithm

To complete our discussion, let’s write the code to implement Fox’s algorithm.
First, we’ll write a function that creates the various communicators and
associated information. Since this requires a large number of variables, and
we’ll be using this information in other functions, we’ll put it into a struct
to facilitate passing it among the various functions.

typedef struct {
int p; /* Total number of processes */
MPI_Comm comm; /* Communicator for entire grid */
MPI_Comm row_comm; /* Communicator for my row */
MPI_Comm col_comm; /* Communicator for my col */

int q; /* Order of grid */

int my_row; /* My row number */

int my_col; /* My column number */

int my_rank; /* My rank in the grid communicator */

} GRID_INFO_TYPE;

/* We assume space for grid has been allocated in the
* calling routine.

40

*/
void Setup_grid(GRID_INFO_TYPE* grid) {
int old_rank;
int dimensions[2];
int periods[2];
int coordinates[2];
int varying_coords[2];

/* Set up Global Grid Information */

MPI_Comm_size (MPI_COMM_WORLD, &(grid->p));

MPI_Comm_rank (MPI_COMM_WORLD, &old_rank);

grid->q = (int) sqrt((double) grid->p);

dimensions[0] = dimensions[1] = grid->q;

periods[0] = periods[1] = 1;

MPI_Cart_create (MPI_COMM_WORLD, 2, dimensions, periods,
1, &(grid->comm));

MPI_Comm_rank(grid->comm, &(grid->my_rank));

MPI_Cart_coords(grid->comm, grid->my_rank, 2,
coordinates) ;

grid->my_row = coordinates[0];

grid->my_col = coordinates[1];

/* Set up row and column communicators */

varying_coords[0] = 0; varying_coords[1] = 1;

MPI_Cart_sub(grid->comm, varying_coords,
&(grid->row_comm)) ;

varying_coords[0] = 1; varying_coords[1] = 0;

MPI_Cart_sub(grid->comm, varying_coords,
&(grid->col_comm)) ;

} /* Setup_grid */

Notice that since each of our communicators has an associated topology,
we constructed them using the topology construction functions — MPI_-
Cart_create and MPI_Cart_sub — rather than the more general communicator
construction functions MPI_Comm_create and MPI_Comm _split.

Now let’s write the function that does the actual multiplication. We’ll
assume that the user has supplied the type definitions and functions for the lo-

41

cal matrices. Specifically, we’ll assume she has supplied a type definition for
LOCAL_MATRIX_TYPE, a corresponding derived type, DERIVED_LOCAL -
MATRIX, and three functions: Local_matrix_.multiply, Local_matrix_allocate,
and Set_to_zero. We also assume that storage for the parameters has been
allocated in the calling function, and all the parameters, except the product
matrix local_C, have been initialized.

void Fox(int n, GRID_INFO_TYPEx grid,
LOCAL_MATRIX_TYPE*x local_A,
LOCAL_MATRIX_TYPE*x local_B,
LOCAL_MATRIX_TYPE* local_C) {
LOCAL_MATRIX_TYPE* temp_A;
int step;
int bcast_root;
int n_bar; /* order of block submatrix = n/q */
int source;
int dest;
int tag = 43;
MPI_Status status;

n_bar = n/grid->q;
Set_to_zero(local_C);

/* Calculate addresses for circular shift of B */
source = (grid->my_row + 1) % grid->q;
dest = (grid->my_row + grid->q - 1) % grid->q;

/* Set aside storage for the broadcast block of A */
temp_A = Local_matrix_allocate(n_bar);

for (step = 0; step < grid->q; step++) {
bcast_root = (grid->my_row + step) % grid->q;
if (bcast_root == grid->my_col) {
MPI_Bcast(local_A, 1, DERIVED_LOCAL_MATRIX,
bcast_root, grid->row_comm) ;
Local_matrix_multiply(local_A, local_B,
local_C);

42

} else {
MPI_Bcast (temp_A, 1, DERIVED_LOCAL_MATRIX,
bcast_root, grid->row_comm) ;
Local_matrix_multiply(temp_A, local_B,
local_C);
}
MPI_Send(local_B, 1, DERIVED_LOCAL_MATRIX, dest, tag,
grid->col_comm) ;
MPI_Recv(local_B, 1, DERIVED_LOCAL_MATRIX, source, tag,
grid->col_comm, &status);
} /% for */

} /% Fox */

43

