3 Collective Communication

There are probably a few things in the trapezoid rule program that we can
improve on. For example, there is the I/O issue. There are also a couple
of problems we haven’t discussed yet. Let’s look at what happens when the
program is run with eight processes.

All the processes begin executing the program (more or less) simultane-
ously. However, after carrying out the basic set-up tasks (calls to MPLInit,
MPI_Comm _size, and MPI_Comm _rank), processes 1-7 are idle while process
0 collects the input data. We don’t want to have idle processes, but in view
of our restrictions on which processes can read input, there isn’t much we
can do about this. However, after process 0 has collected the input data, the
higher rank processes must continue to wait while 0 sends the input data to
the lower rank processes. This isn’t just an I/O issue. Notice that there is
a similar inefficiency at the end of the program, when process 0 does all the
work of collecting and adding the local integrals.

Of course, this is highly undesirable: the main point of parallel processing
is to get multiple processes to collaborate on solving a problem. If one of
the processes is doing most of the work, we might as well use a conventional,
single-processor machine.

3.1 Tree-Structured Communication

Let’s try to improve our code. We’ll begin by focussing on the distribution
of the input data. How can we divide the work more evenly among the
processes? A natural solution is to imagine that we have a tree of processes,
with 0 at the root.

During the first stage of the data distribution, 0 sends the data to (say)
4. During the next stage, 0 sends the data to 2, while 4 sends it to 6. During
the last stage, 0 sends to 1, while 2 sends to 3, 4 sends to 5, and 6 sends to
7. (See figure 3.1.) So we have reduced our input distribution loop from
7 stages to 3 stages. More generally, if we have p processes, this procedure
allows us to distribute the input data in [log,(p)]* stages, rather than p — 1
stages, which, if p is large, is a huge savings.

In order to modify the Get_data function to use a tree-structured distri-

*The notation [z] denotes the smallest whole number greater than or equal to z.

11



Figure 1: Processors configured as a tree

bution scheme, we need to introduce a loop with [log,(p)] stages. In order
to implement the loop, each process needs to calculate at each stage

e whether it receives, and, if so, the source; and
e whether it sends, and, if so, the destination.

As you can probably guess, these calculations can be a bit complicated,
especially since there is no canonical choice of ordering. In our example, we
chose:

1. 0 sends to 4.

2. 0 sends to 2, 4 sends to 6.

3. 0 sends to 1, 2 sends to 3, 4 sends to 5, 6 sends to 7.
We might also have chosen (for example):

1. 0 sends to 1.

2. 0 sends to 2, 1 sends to 3.

3. 0 sends to 4, 1 sends to 5, 2 sends to 6, 3 sends to 7.

12



Indeed, unless we know something about the underlying topology of our
machine, we can’t really decide which scheme is better.

So ideally we would prefer to use a function that has been specifically
tailored to the machine we’re using so that we won’t have to worry about all
these tedious details, and we won’t have to modify our code every time we
change machines. As you may have guessed, MPI provides such a function.

3.2 Broadcast

A communication pattern that involves all the processes in a communicator
is a collective communication. As a consequence, a collective communication
usually involves more than two processes. A broadcast is a collective commu-
nication in which a single process sends the same data to every process. In
MPI the function for broadcasting data is MPI_Bcast:

int MPI_Bcast(void* message, int count,
MPI_Datatype datatype, int root, MPI_Comm comm)

It simply sends a copy of the data in message on process root to each process
in the communicator comm. It should be called by all the processes in the
communicator with the same arguments for root and comm. Hence a broad-
cast message cannot be received with MP|_Recv. The parameters count and
datatype have the same function that they have in MPI_Send and MPI_Recv:
they specify the extent of the message. However, unlike the point-to-point
functions, MPI insists that in collective communication count and datatype
be the same on all the processes in the communicator [4]. The reason for this
is that in some collective operations (see below), a single process will receive
data from many other processes, and in order for a program to determine
how much data has been received, it would need an entire array of return
statuses.
We can rewrite the Get_data function using MPI_Bcast as follows.

void Get_data2(int my_rank, float* a_ptr, float* b_ptr,
int* n_ptr) {
int root = 0; /* Arguments to MPI_Bcast */
int count = 1;

if (my_rank == 0)

13



printf ("Enter a, b, and n\n");
scanf ("%f %f %d", a_ptr, b_ptr, n_ptr);

}

MPI_Bcast(a_ptr, 1, MPI_FLOAT, root,
MPI_COMM_WORLD) ;

MPI_Bcast(b_ptr, 1, MPI_FLOAT, root,
MPI_COMM_WORLD) ;

MPI_Bcast(n_ptr, 1, MPI_INT, root,
MPI_COMM_WORLD) ;

} /* Get_data2 */

Certainly this version of Get_data is much more compact and readily com-
prehensible than the original, and if MPI_Bcast has been optimized for your
system, it will also be a good deal faster.

3.3 Reduce

In the trapezoid rule program after the input phase, every processor executes
essentially the same commands until the final summation phase. So unless
our function f(z) is fairly complicated (i.e., it requires considerably more
work to evaluate over certain parts of [a, b]), this part of the program dis-
tributes the work equally among the processors. As we have already noted,
this is not the case with the final summation phase, when, once again, process
0 gets a disproportionate amount of the work. However, you have probably
already noticed that by reversing the arrows in figure 3.1, we can use the
same idea we used in section 3.1. That is, we can distribute the work of
calculating the sum among the processors as follows.

1. (a) 1 sends to 0, 3 sends to 2, 5 sends to 4, 7 sends to 6.

(b) 0 adds its integral to that of 1, 2 adds its integral to that of 3, etc.
2. (a) 2 sends to 0, 6 sends to 4.

(b) 0 adds, 4 adds.
3. (a) 4 sends to 0.

(b) 0 adds.

14



Of course, we run into the same question that occurred when we were writing
our own broadcast: is this tree structure making optimal use of the topology
of our machine? Once again, we have to answer that this depends on the
machine. So, as before, we should let MPI do the work, by using an optimized
function.

The “global sum” that we wish to calculate is an example of a general
class of collective communication operations called reduction operations. In a
global reduction operation, all the processes (in a communicator) contribute
data which is combined using a binary operation. Typical binary operations
are addition, max, min, logical and, etc. The MPI function for performing a
reduction operation is

int MPI_Reduce(void* operand, void#* result,
int count, MPI_Datatype datatype, MPI_Op op,
int root, MPI_Comm comm)

MPI_Reduce combines the operands stored in *operand using operation op
and stores the result in *result on process root. Both operand and result refer
to count memory locations with type datatype. MPIl_Reduce must be called by
all processes in the communicator comm, and count, datatype, and op must
be the same on each process.

The argument op can take on one of the following predefined values.

Operation Name | Meaning

MPI_MAX Maximum

MPI_MIN Minimum

MPI_SUM Sum

MPI_PROD Product

MPI_LAND Logical And

MPI_BAND Bitwise And

MPI_LOR Logical Or

MPI_BOR Bitwise Or

MPI_LXOR Logical Exclusive Or

MPI_BXOR Bitwise Exclusive Or

MPI_MAXLOC Maximum and Location of Maximum
MPI_MINLOC Minimum and Location of Minimum

It is also possible to define additional operations. For details see [4].

15



As an example, let’s rewrite the last few lines of the trapezoid rule pro-
gram.

/* Add up the integrals calculated by each process */
MPI_Reduce (&integral, &total, 1, MPI_FLOAT,
MPI_SUM, 0, MPI_COMM_WORLD) ;

/* Print the result */

Note that each processor calls MPI_Reduce with the same arguments. In
particular, even though total only has significance on process 0, each process
must supply an argument.

3.4 Other Collective Communication Functions

MPI supplies many other collective communication functions. We briefly
enumerate some of these here. For full details, see [4].

° int MPI_Barrier(MPI_Comm comm)

MPI_Barrier provides a mechanism for synchronizing all the processes in
the communicator comm. Each process blocks (i.e., pauses) until every
process in comm has called MPI_Barrier.

° int MPI_Gather(void* send_buf, int send_count,
MPI_Datatype send_type, void* recv_buf,
int recv_count, MPI_Datatype recv_type,
int root, MPI_comm comm)

Each process in comm sends the contents of send_buf to the process with
rank root. The process root concatenates the received data in process
rank order in recv_buf. That is, the data from process 0 is followed by
the data from process 1, which is followed by the data from process 2,
etc. The recv arguments are significant only on the process with rank
root. The argument recv_count indicates the number of items received
from each process — not the total number received.

16



int MPI_Scatter(void* send_buf, int send_count,
MPI_Datatype send_type, void* recv_buf,
int recv_count, , MPI_Datatype recv_type,
int root, MPI_Comm comm)

The process with rank root distributes the contents of send_buf among
the processes. The contents of send_buf are split into p segments each
consisting of send_count items. The first segment goes to process 0, the
second to process 1, etc. The send arguments are significant only on
process root.

int MPI_Allgather(void* send_buf, int send_count,
MPI_Datatype send_type, void* recv_buf,
int recv_count, MPI_Datatype recv_type,
MPI_comm comm)

MPI_Allgather gathers the contents of each send_buf on each process. Its
effect is the same as if there were a sequence of p calls to MPI_Gather,
each of which has a different process acting as root.

int MPI_Allreduce(void* operand, void* result,
int count, MPI_Datatype datatype, MPI_Op op,
MPI_Comm comm)

MPI_Allreduce stores the result of the reduce operation op in each pro-
cess’ result buffer.

17



