2 Greetings!

The first C program that most of us saw was the “Hello, world!” program in
Kernighan and Ritchie’s classic text, The C Programming Language [3]. It
simply prints the message “Hello, world!” A variant that makes some use of
multiple processes is to have each process send a greeting to another process.

In MPI, the processes involved in the execution of a parallel program are
identified by a sequence of non-negative integers. If there are p processes
executing a program, they will have ranks 0, 1, ..., p — 1. The following
program has each process other than 0 send a message to process 0, and
process 0 prints out the messages it received.

#include <stdio.h>
#include "mpi.h"

main(int argc, char*x* argv) {

int my_rank; /* Rank of process */

int p; /* Number of processes */
int source; /* Rank of sender */

int dest; /* Rank of receiver */
int tag = 50; /* Tag for messages */

char message[100]; /* Storage for the message */
MPI_Status status; /* Return status for receive */

MPI_Init(&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &my_rank);
MPI_Comm_size (MPI_COMM_WORLD, &p);

if (my_rank != 0) {
sprintf (message, "Greetings from process %d!",
my_rank) ;
dest = 0;
/* Use strlen(message)+1l to include ’\0’ */
MPI_Send(message, strlen(message)+1, MPI_CHAR, dest,
tag, MPI_COMM_WORLD) ;
} else { /* my_rank == 0 */
for (source = 1; source < P; source++) {



MPI_Recv(message, 100, MPI_CHAR, source, tag,
MPI_COMM_WORLD, &status);
printf("%s\n", message);

MPI_Finalize();
} /* main */

The details of compiling and executing this program depend on the sys-
tem you’re using. So ask your local guide how to compile and run a parallel
program that uses MPI. We discuss the freely available systems in an ap-
pendix.

When the program is compiled and run with two processes, the output
should be

Greetings from process 1!
If it’s run with four processes, the output should be

Greetings from process 1!
Greetings from process 2!
Greetings from process 3!

Although the details of what happens when the program is executed vary
from machine to machine, the essentials are the same on all machines, pro-
vided we run one process on each processor.

1. The user issues a directive to the operating system which has the effect
of placing a copy of the executable program on each processor.

2. Each processor begins execution of its copy of the executable.

3. Different processes can execute different statements by branching within
the program. Typically the branching will be based on process ranks.

So the Greetings program uses the Single Program Multiple Data or SPMD
paradigm. That is, we obtain the effect of different programs running on
different processors by taking branches within a single program on the basis
of process rank: the statements executed by process 0 are different from those



executed by the other processes, even though all processes are running the
same program. This is the most commonly used method for writing MIMD
programs, and we’ll use it exclusively in this Guide.

2.1 General MPI Programs

Every MPI program must contain the preprocessor directive
#include "mpi.h"

This file, mpi.h, contains the definitions, macros and function prototypes
necessary for compiling an MPI program.

Before any other MPI functions can be called, the function MPI_Init must
be called, and it should only be called once. Its arguments are pointers to
the main function’s parameters — argc and argv. It allows systems to do any
special set-up so that the MPI library can be used. After a program has
finished using the MPI library, it must call MPIl_Finalize. This cleans up any
“unfinished business” left by MPI — e.g., pending receives that were never
completed. So a typical MPI program has the following layout.

#include "mpi.h"
main(int argc, char*x* argv) {

/* No MPI functions called before this */
MPI_Init(&argc, &argv);

MPI_Finalize();
/* No MPI functions called after this */

} /% main */



2.2 Finding Out About the Rest of the World

MPI provides the function MPl_-Comm_rank, which returns the rank of a
process in its second argument. Its syntax is

int MPI_Comm_rank (MPI_Comm comm, int rank)

The first argument is a communicator. Essentially a communicator is a collec-
tion of processes that can send messages to each other. For basic programs,
the only communicator needed is MPI_.COMM_WORLD. It is predefined in
MPI and consists of all the processes running when program execution be-
gins.

Many of the constructs in our programs also depend on the number of pro-
cesses executing the program. So MPI provides the function MPl_Comm _size
for determining this. Its first argument is a communicator. It returns the
number of processes in a communicator in its second argument. Its syntax is

int MPI_Comm_size(MPI_Comm comm, int size)

2.3 Message: Data + Envelope

The actual message-passing in our program is carried out by the MPI func-
tions MP1_Send and MPI_Recv. The first command sends a message to a des-
ignated process. The second receives a message from a process. These are
the most basic message-passing commands in MPI. In order for the message
to be successfully communicated the system must append some information
to the data that the application program wishes to transmit. This addi-
tional information forms the envelope of the message. In MPI it contains the
following information.

1. The rank of the receiver.
2. The rank of the sender.
3. A tag.

4. A communicator.

These items can be used by the receiver to distinguish among incoming mes-
sages. The source argument can be used to distinguish messages received

7



from different processes. The tag is a user-specified int that can be used to
distinguish messages received from a single process. For example, suppose
process A is sending two messages to process B; both messages contain a
single float. One of the floats is to be used in a calculation, while the other
is to be printed. In order to determine which is which, A can use different
tags for the two messages. If B uses the same two tags in the correspond-
ing receives, when it receives the messages, it will “know” what to do with
them. MPI guarantees that the integers 0-32767 can be used as tags. Most
implementations allow much larger values.

As we noted above, a communicator is basically a collection of processes
that can send messages to each other. When two processes are communi-
cating using MPIl_Send and MPI_Receive, its importance arises when separate
modules of a program have been written independently of each other. For
example, suppose we wish to solve a system of differential equations, and, in
the course of solving the system, we need to solve a system of linear equa-
tions. Rather than writing the linear system solver from scratch, we might
want to use a library of functions for solving linear systems that was written
by someone else and that has been highly optimized for the system we're
using. How do we avoid confusing the messages we send from process A to
process B with those sent by the library functions? Before the advent of
communicators, we would probably have to partition the set of valid tags,
setting aside some of them for exclusive use by the library functions. This is
tedious and it will cause problems if we try to run our program on another
system: the other system’s linear solver may not (probably won’t) require
the same set of tags. With the advent of communicators, we simply create
a communicator that can be used exclusively by the linear solver, and pass
it as an argument in calls to the solver. We’ll discuss the details of this
later. For now, we can get away with using the predefined communicator
MPI_COMM_WORLD. It consists of all the processes running the program
when execution begins.

2.4 MPI_Send and MPI_Receive

To summarize, let’s detail the syntax of MPI_Send and MPI_Receive.

int MPI_Send(void* message, int count,
MPI_Datatype datatype, int dest, int tag,



MPI_Comm comm)

int MPI_Recv(void* message, int count,
MPI_Datatype datatype, int source, int tag,
MPI_Comm comm, MPI_Status* status)

Like most functions in the standard C library most MPI functions return an
integer error code. However, like most C programmers, we will ignore these
return values in most cases.

The contents of the message are stored in a block of memory referenced by
the argument message. The next two arguments, count and datatype, allow
the system to identify the end of the message: it contains a sequence of count
values, each having MPI type datatype. This type is not a C type, although
most of the predefined types correspond to C types. The predefined MPI
types and the corresponding C types (if they exist) are listed in the following
table.

MPI datatype C datatype
MPI_CHAR signed char
MPI_SHORT signed short int
MPLINT signed int
MPI_LONG signed long int

MPI_UNSIGNED_CHAR | unsigned char
MPI_UNSIGNED_SHORT | unsigned short int

MPI_UNSIGNED unsigned int
MPI_UNSIGNED_LONG | unsigned long int
MPI_FLOAT float
MPI_DOUBLE double
MPI_LONG_DOUBLE long double
MPI_BYTE

MPI1_PACKED

The last two types, MPI_BYTE and MPI_PACKED, don’t correspond to stan-
dard C types. The MPI_BYTE type can be used if you wish to force the
system to perform no conversion between different data representations (e.g.,
on a heterogeneous network of workstations using different representations
of data). We’ll discuss the type MPI_PACKED later.

Note that the amount of space allocated for the receiving buffer does not
have to match the exact amount of space in the message being received. For

9



example, when our program is run, the size of the message that process 1
sends, strlen(message)+1, is 28 chars, but process 0 receives the message in
a buffer that has storage for 100 characters. This makes sense. In general,
the receiving process may not know the exact size of the message being sent.
So MPI allows a message to be received as long as there is sufficient storage
allocated. If there isn’t sufficient storage, an overflow error occurs [4].

The arguments dest and source are, respectively, the ranks of the receiving
and the sending processes. MPI allows source to be a “wildcard.” There is
a predefined constant MPI_ANY_SOURCE that can be used if a process is
ready to receive a message from any sending process rather than a particular
sending process. There is not a wildcard for dest.

As we noted earlier, MPI has two mechanisms specifically designed for
“partitioning the message space:” tags and communicators. The arguments
tag and comm are, respectively, the tag and communicator. The tag is an
int, and, for now, our only communicator is MPI_.COMM_WORLD, which,
as we noted earlier is predefined on all MPI systems and consists of all the
processes running when execution of the program begins. There is a wildcard,
MPI_ANY_TAG, that MPI_Recv can use for the tag. There is no wildcard for
the communicator. In other words, in order for process A to send a message
to process B, the argument comm that A uses in MPl_Send must be identical
to the argument that B uses in MPI_Recv.

The last argument of MP|_Recv, status, returns information on the data
that was actually received. It references a record with with two fields — one
for the source and one for the tag. So if, for example, the source of the receive
was MPI_ANY_SOURCE, then status will contain the rank of the process that
sent the message.

10



